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ABSTRACT 

This program conducted experimental and theoretical research aimed at developing an 
optically driven quantum dot quantum computer.  In addition to the two co-principal 
investigators (Sham and Steel), the work was done in collaboration with Dan Gammon at the 
Naval Research Laboratory.  D. Gammon had responsibility for designing, fabricating and basic 
spectroscopy of the material, LJ Sham is responsible for theoretical support and concept 
development, and DG Steel is responsible for experimental demonstration of key experimental 
demonstrations for quantum computing.  For this program, qubit is the spin of the electron 
trapped in a self-assembled quantum dot in InAs.  Optical manipulation using the trion state 
allows for fast (psec) rotations of the electron spin.  The program achieved several milestones 
including demonstration of initialization, fast spin rotations and a phase gate, reduction of 
nuclear fluctuations extending the spin coherence time by 3 orders of magnitude, major advances 
in scalable gate proposals, and two proposals for measurement of measurement of true spin 
coherence time..  
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INTRODUCTION 

This work focused on the study and development of single electron doped semiconductor 
quantum dots (QD) for application to the problem of optically driven quantum computing and 
future spin based quantum devices.  The developments in this field are based on the recent 
advances in fabrication and nano-optical-probing and the new developments of our own group 
that have contributed with the first measurements and theory in coherent nonlinear optical 
manipulation of these systems.  The primary advantage of the optical approach is that it allows 
for device speeds to be in the 100 GHz region, as discussed and demonstrated during this grant 
cycle, orders of magnitude faster than competing approaches for quantum architectures.  Also, 
the absence of wires for electrical pulses reduces the architectural complexity as dimensions 
become smaller which would also lead to higher electrode densities.   

Approach 

Our approach to the study of these systems and device demonstration is based on the use of 
coherent nonlinear laser spectroscopy, coherent transient excitation and optical control, and the 
use of advanced materials.  The qubit of interest is the electron spin confined to a semiconductor 
quantum dot. Materials are grown by MBE and further processing by lithography techniques by 
Dan Gammon and his group at NRL.  

The dots are self-assembled quantum dots (SAQD) in Schottky diodes. A scalable 
architecture has been established by us (Lu J. Sham, UC-SD) based on individual qubits 
(electron spins) confined in adjacent quantum dots [Phys. Rev. Lett. 89, 167402 (2002).]  The 
qubit can experience an arbitrary rotation by excitation through a virtually excited trion state 
using a coherent Raman type excitation.  Entanglement between spin in adjacent dots is 
accomplished by a modified optical RKKY (ORKKY) interaction yielding a Heisenberg 
Hamiltonian coupling between the two spins.  High speed state initialization is achieved by spin 
cooling techniques [Phys. Rev. Lett. 98, 047401 (2007)] 

Figure 1 shows the basic 
idea of a SAQD spin qubit 
based on InAs on GaAs 
shown in the many-particle 
picture.  By adding a single 
electron to the quantum dot, 
the ground state of this 
system becomes doubly 
degenerate and is known to 
exhibit long relaxation 
times. The long relaxation 
time is expected to lead to 
long coherence times.  A 
scalable system is achieved 
by creating an array of such 
dots within a few 10’s of 
nanometers of each other.  

 
Figure 1.  The general QD energy level diagram and polarization selection rules in 
a magnetic field in the x-direction (Voigt profile) for InAs SAQDs.  
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Brief Summary of Research Findings for the 3 year period: 

All of the research findings presented in this report have been presented in the annual reports. 
We summarize the most exciting results below.  NOTE:  In areas where theory is complemented 
by experiments, the discussion is unified.  Advanced theory is discussed separately.   

Fast Qubit Initialization and Spin Cooling 

One of the DiVincenzo criteria requires that a proposed system for quantum computation not 
only have a set of qubits to be initialized to high fidelity, but also a continuous supply of fresh 
ancillary qubits in the shortest amount of time for quantum error correction. In this work, we 
demonstrate fast spin state initialization with near unity efficiency in a singly-charged quantum 
dot by optically cooling an electron spin.  

In order to implement a fast spin state initialization, the dark transitions labeled H1 and H2 in 
Fig. 1 are forbidden and have to become bright, since the optical pumping rate depends on the 
spin flip Raman scattering process. This is shown in Fig. 2 along with the theory of the state 
initialization purity as a function of time.  The forbidden transition becomes allowed by applying 
a magnetic field perpendicular to the sample growth direction [001]. 

Figure 3 shows the VM absorption map as a 
function of the applied bias at a magnetic field of 
0.88 T along the [110] axis. The laser field is 
linearly polarized and 45o

 to the polarization axis 
of the quantum dot.  

In bias region II, the optical pumping rate is 
larger than the spin relaxation rate. Fast spin 
cooling is demonstrated, where the absorption of 
the laser beam is strongly suppressed by optical 
pumping (in the regions identified by the blue 
circles). In region I, co-tunneling or tunneling 
exchange of the dot electron between the 
quantum dot and the electron in the Fermi sea 
which induces the dot electron spin relaxation, is 
comparable or larger than the optical pumping 
rate, so the depletion of the spin ground states is 
not achieved. Thus, the strong suppression of the 
absorption disappears in region I and a quartet 
transition pattern appears. The physics of the two 
bias regions is different because the g factor 
associated with transition H1 and H2 is bias 
dependent.  

 
 

Figure 2.  Energy level structure and optical pumping 
effect leading to state initialization when a magnetic 
field is applied in the Voigt profile (orthogonal to the 
growth direction.  The curve on the right shows the 
optical pumping efficiency (or state purity) as a 
function of time.   

 
Figure 3.  Demonstration of optical pumping.  This 
shows the absorption as a function of bias voltage and 
laser energy.  In region 1, because of co-tunneling, 
there is no effective optical pumping of the spin state. 
In region two, co-tunneling is suppressed and spin 
cooling occurs.  On the V1 transition, the spin is 
transferred from the ground state of the V1 transition 
to the other spin state and depletion of the V1 ground 
state means no absorption is observed as indicated by 
the blue circle on the left.  The same discussion applied 
when the laser is tuned to the V2 transition as shown 
by the blue circle on the right.   
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Rabi Splitting, AC Stark Effect and Dark State Formation 

Rabi Splitting: Critical to quantum computing is the qubit rotation accomplished by a Rabi 
oscillation.  Using cw lasers of the type found in the telecom community, we demonstrated the 
ability to produce high speed Rabi oscillations in excess of 1.4 GHz. The power required for this 
demonstration was only ~15 nano-Watts corresponding to about 10-18 Joules per switching event 
or rotation (Rabi flop). The maximum rate is anticipated to be closer to 100 GHz.  

The measurements performed here report on the power spectrum since the rates are so high, 
rather than making the rotations apparent directly in the time domain. To do this, we used a well 
established technique used to measure the bandwidth of high speed detectors.  We took two 
frequency stabilized lasers and mixed their output in the dot, producing a temporal modulation at 
the frequency difference.  We then report the strength of oscillation as a function of detuning.  A 
resonance is observed at the Rabi frequency.   

To see the physics of 
this measurement and the 
measurement technique, 
we examine the energy 
level diagram of a simple 
3 level system.  For the 
first set of measurements, 
we configured the system 
for a 3-level V-system, 
shown in Fig. 4a.  In the 
presence of a strong field 
driving the H-transition 
on resonance, the 
interaction between the 
field and atom lifts the 
degeneracy between the 
|2,n> state and the |3,n-1> 

state by an amount give by the Rabi frequency.  n is the number of photons in the radiation 
mode.  The result is a dress atom picture shown in Fig. 4b.  In this picture, levels 2 and 3 appear 
to split by an amount given by ħΩR.   

 If the strong field is on resonance and we probe transition 2 to 3, we find a splitting in the 
absorption spectrum called the Autler Townes splitting.  The splitting of the resonances is the 
Rabi frequency (data not shown).  If the strong field is tuned off resonance, we easily observe the 
AC Stark effect (data not shown). If the strong field is on resonance and we probe the H-
transition, we see the Mollow absorption spectrum as seen in Fig. 5. This is closely related to the 
Mollow 3-peak fluorescence spectrum.  The solid line in the data represents the theory with no 
adjustable parameters except the oscillator strength.  Not only is the agreement excellent, but the 
numbers agree well with independent determination of the numbers.  Furthermore, the data 
shows we can drive the system up to the limit of the current setup which corresponded to a Rabi 
flopping rate of 1.4 GHz.  The power spectrum shown here is more complicated than a typical 
power spectrum because there is both absorption and gain, even though there is no inversion in 

 
Figure 4.  The right figure shows a simple 3-level V-system that we used to 
demonstrate the high speed Rabi oscillations.  The left figure shows the 3-level 
system in the presence of a strong field near resonance of the 2-3 transition in the 
dressed atom picture.  Levels 2 and 3 appear to split by an amount given by the 
Rabi energy.  Probing the absorption on the 1-2 transition reveals the Autler-
Townes splitting and proving the 2-3 transition shows the Mollow absorption 
spectrum.   
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the system.  Hence, the structures around the Rabi frequencies show a dispersion like feature 
with gain for detunings below the Rabi resonance.  

  
 The results were published in Science, 2007.  These 

results were extended to studies of the rotation (Rabi 
oscillation) also in charged dots, and show spin rotations 
above 200 MHz, limited only again by the current setup.  
A clear signature of the coherent nature of this 
oscillation will become more evident for rotation rates 
above GHz which is our current focus. 

Dark State Formation:  Coherent Trapping of an 
Arbitrary Spin State of a Single Electron in a 
Single SAQD 

Using cw narrowband excitation, it is possible to 
excite just one of the trion states in Fig. 1.  The resultant 
3 level structure for our experiment is shown in Fig. 6 
(left panel).  This is the same 3 level system used to 
optically initialize the system using optical pumping and 
spin cooling discussed in the previous report.  When 
only V2 was on, the electron was optically pumped from 

the X- state to the X+ state.  However, when a probe field simultaneously illuminates the system 
and is resonant with the other transition (H1), the system evolves, in steady state, to a dark state.  
This state is a superposition state of the two ground states given, in the field interaction picture, 

by 

€ 

Darkstate =
Ω p X− +Ωd X+

Ω p
2 +Ωd

2
 

It is manifest as a dip in the probe absorption 
spectrum at when the probe is on the H1 
resonance.  The theoretical result is shown in the 
right panel of Fig. 6.  The dip is evident even at 
low powers when the pump power is well below 
that needed to observe the onset of Autler 
splitting.   

Figure 7 shows the experimental result for a 
number of different pump (V2) intensities (in 
units of the normalized Rabi frequency).  The 
presence of the dark state dip is clear at 
intensities well below the onset of the Autler 

Townes splitting.  The dark state shows not only arbitrary spin state preparation but also further 
proof of the spin coherence since the dark state can not form in the absence of this coherence.  
The observation of the dark state is a necessary step in demonstrating the ability to line up the 
laser frequencies with the spin coherence bandwidth needed for spin rotation.   

 

 
Figure 5.  The Mollow absorption spectrum 
obtained by driving and probing the same 
transition in Fig. 4.  The absorption goes 
negative as seen in the inset, which means there 
is gain in the system without inversion.   

 

 

Figure 6.  Left panel:  3 level structure for studying the 
dark state.  Right panel: Theoretical line shape for 
absorption as a function of the detuning of the filed 
nearly resonant with H1 as a function of detuning from 
H1.   
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Rx and Ry Rotations and a Fast Phase Gate 

A major experimental effort focused on 
measurements of spin rotation working on single 
SAQDs in Schottky diode structure and biased to 
contain one extra electron.  Measurements 
demonstrated the single qubit rotations needed for 
universal gate operations. The fastest gate 
operations can be done with a clock rate of over 
100 GHz based on using 2 psec pulses.   

A paper on this work is currently under review 
by PRL.  Figure 8a shows the basic ideas in the 
context of the Bloch sphere of the electron spin.  
The system is first initialized as demonstrated 
above.   Then, a two-photon resonant optical pulse 
rotates the Bloch vector around the x-axis (along 
the magnetic field), leading to Rx.  Shown is the 
effect of a pi/2 pulse.  Precession results in a 
rotation around the z-axis (the optical axis), Rz. Rotation around Ry is then given by 

€ 

R−y θ( ) = Rz −π 2( )Rx θ( )Rz π 2( ).  The inset (a) of data (the red curve is theory) shows the 
measurement with the arrows showing the different directions of the Bloch vector.  Inset (b) 
shows the results as a function of magnetic field which controls the speed of the Rz rotation.  
Readout of the signal was made by a unique approach of following the absorption of light from 
the optical pumping beam.  Optical pumping drove the absorption to near zero.  Then, a rotation 
creating some probability amplitude of the system being driven to the other spin state resulting in 
absorption as the system was pumped back into the initial state of the operation.   

 
Figure 7.  The dark state appears as the dip in the 
absorption spectrum as a function of probe detuning 
from the H1 resonance for various pump intensities, 
in units of the normalized Rabi frequency.   

 Figure 8.  X and Y rotations 
demonstrated on a single spin qubit.  
Note that here, we have changed the 
coordinate system relative to that in 
Figure 1.  Figure 1 is appropriate for 
conventions in InAs.  However, Fig 
8 is consistent with Nielsen and 
Chuang where the axis of 
quantization in this figure is the z-
axis, parallel to the magnetic field of 
Fig. 1. 
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As part of this work, a phase gate was implemented by using another optical field, with a 
bandwidth narrow compared to the Zeeman splitting and performing a 

€ 

2π  rotation of a single 
spin state with a trion state.  This leads to the Bloch sphere picture in Figure 9 along with the 
rotation matrix shown at the bottom of the figure. In these experiments, the qubit remains the 
spin, but we can exploit the specific coupling between a given spin state and the trion to perform 
a rotation of the corresponding optical Bloch vector.  A 

€ 

2π  rotation of the optical Bloch vector 
leads to a change in the phase of that specific spin state.  On resonance with the trion transition, 
the original probability amplitude is multiplied by -1.  This is a so-called Z-gate.  Off resonance 
with the trion and we can establish an arbitrary phase (a phase gate).   

 

 

Figure 10 shows the theory and the data.  In a two pulse experiment, the readout shows an 
oscillation corresponding to precession of the spin.  However, as noted, there is a phase shift that 
occurs in the oscillation that corresponds to the change in the phase of the one spin state 
probability amplitude.  

The Optically Driven Nuclear Spin Servo and an Increase in Electron Spin 
Coherence Time 

Above, we detailed the identification and behavior of the coherently trapped spin leading to 
the optical dark state, a purely coherent phenomenon that can occur in a 3 level Λ system when 
long lived coherence occurs in the two nearly degenerate ground states.  The location of the dark 
state is a precise measure of the Zeeman splitting and the depth of the transparency that forms in 
this dark state can be used to measure the electron spin coherence.   
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What we found is that by exciting the hole, the hole interacts with the nuclear spin through 
the anisotropic term and leads to a flipping of the nuclear spin.  The flip of the nuclear spin 
changes the Overhauser field that shifts the trion resonance.  The spin flip interaction is 
proportional to the probabilities of coupling to the hole both before and after the spin flip.  
Hence, it drives the nuclear configuration to maximize the hole excitation and stabilizes the 
nuclear fluctuation, i.e., reduces the fluctuations without causing a significant change in the 
nuclear polarization.  Experimentally, this is observed as a deepening of the transparency hole in 
the dark state with a relatively small shift, reflecting an increase in the electron spin coherence 
time due to reduced nuclear fluctuations but no significant changes in the nuclear polarization.  

The result is that 
we discovered that 
we were able to 
suppress nuclear 
fluctuations to a 
steady state value 
(rather than through 
use of rephrasing 
techniques such as 
an echo) that extends 
the spin coherence 
time to over three 
orders of magnitude, 
well beyond a 
microsecond.  We 
believe the actual 
spin coherence time 
is longer.  A paper 
describing this 
appeared in a June 

2009 issue of Nature.  The result and nuclear coupling model with feedback is shown in Fig. 11. 

To avoid complications with measuring the spin decoherence rate by measuring the whole 
depth in real time while the second optical field simultaneously scans the transparency hole and 
also works to excite the hole to suppress nuclear fluctuations (black dots in Fig. 11, upper data 
set), we used a 3 beam experiment, so that two fixed frequency optical fields locked the nuclear 
spin and a 3rd field measured the hole depth (red dot).  The red dot shows the dramatic (>3 orders 
of magnitude) improvement in the electron spin coherence time compared to that typically 
measured in the this system.  The lower data set in Fig. 5 shows the coherent spin state trapping 
spectrum seen in the last report, using first two and then 3 optical fields.  The red curve is a fit of 
the theory developed by our collaborators, Wang Yao and LJ Sham and the green curve shows 
the response predicted in the absence of this nuclear feedback.  

 

Figure 10.  Experimental demonstration of phase gate operation.  The modulation of 
the phase occurs at a point corresponding to a 2π rotation between a single spin state 
and the trion. 
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Figure 11.  Experimental data and theory (red curves) demonstrating the role of dynamic nuclear polarization by 
hole coupling and the resultant suppression of nuclear spin fluctuations.  The green curve is the theory using the 
electron spin decoherence rate in the absence of reduced nuclear spin fluctuations.   

Proposal for Scalable Design 

In addition to the theoretical support of experiments on fast initialization and single qubit 
rotations, we explored ways to implement entangling gates between two spins in two dots. We 
designed two architectures for the semiconductor dots system to ensure the scalability of the 
optical processing of quantum information. 

We concentrated on utilizing the properties of the vertical dots fabricated by Gammon's 
group for the entangling operation by laser control. While the vertical dots in a column being 
limited in number are not sufficient for a generally scalable architecture, demonstration of 
entanglement in them is nonetheless a valuable step in experimental demonstration of optical 
control capability towards a scalable architecture involving horizontally arranged dots. 
Moreover, we have demonstrated in theory that a column of vertical dots may constitute a node 
in the quantum network of dots in nanocavities connected by wave guides for a scalable 
distributed quantum computer [Phys. Rev. Lett. 95, 030504 (2005); J. Opt. B: Quantum 
Semiclass. Opt. 7, S318 (2005).].   

The process design and simulation based on the principle of optically induced exchange 
interaction between two dot spins (termed ORKKY) has been published [Phys. Rev. B 75, 
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125317 (2007)]. This would require two vertical dots to have tunneling p shell electron levels.  
The theory group and Steel’s group collaborated in designing an entangling process that had 
fewer requirements on the dot fabrication. An alternative to ORKKY was to make use of the 
Coulomb interaction between the optical excitations of two spins (trions) in two vertical dots 
[Phys. Rev. B 78, 235314 (2008)]. Fig. 12 shows the optical path used to entangle the |x+,x+> 
and |x-,x-> states of the two spins in the Voigt configuration through excitation and de-excitation 
of single and two trions. The interaction between the two trions residing in different dots makes 
the transition  energy between the two trion state and a single trion state smaller than the 
transition energy between the single trion and the spin state. This enables the optical frequency 
selection of the transition processes in the path shown.  

Fig. 13 contrasts the optical process using the 
two trion interaction with the one using 
ORKKY. The former lets the optically excited 
electrons and holes remain in their respective 
dots but requires four optical fields for control. 
The latter requires the two dots to permit 
tunneling of the excited electron between the two 
dots but uses only two optical fields. Thus, the 
former may use vertical dots already fabricated 
but makes more demands on the optical process.  

The interaction method included a design of 
the optical control to minimize the unintended 
dynamics involving other possible excited states 
(eleven of them) to improve the concurrence (an 

entanglement measure) above 92%. 
 

Figure 13.  Feynman diagrams of the two entanglement processes. In the left figure, the excited  electrons and holes 
in the two dots interact via the Coulomb interaction from their own dots. In the right figure, (ORKKY), the excited 
electron interacts at a short range with the spins localized in separate dots. The black arrow denotes an electron and 
the green arrow a hole and the broken line the Coulomb interaction. 
 

 
 

 
 

 
Figure 12.  Optical path to entangle two dot spins via 
trions states T+ or T- from electron spin states x+ or 
x- from dot 1 or 2 by light of vertical (V) or horizontal 
(H) polarization.   
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The Improved Coulomb Logic Gate:  Use of Adiabatic Passage 
The salient features are: 
• By utilizing the interaction between the optical interactions in separate dots, it is not 

necessary to design for tunneling of electrons between the dots. The concurrence of 
entanglement of the states can vary from 0.4 for a Coulomb interaction of 0.1 meV to over 
0.85 for interaction above 1 meV. 

• The use of adiabatic optical control minimizes noise effect and unintended dynamics while 
keeping the operational time in the nanosecond range. This theory is also in keeping with the 
next generation telecom lasers used for optical control in Steel's group. 
The method was based on the Stimulated Raman adiabatic passage (STIRAP) but, unlike the 

population transfer for which STIRAP was designed, a quantum operation required more than 
one adiabatic paths so that the operation was independent of the initial state. The design principle 
was to optically dress (and thus connect) a pair of two-spin states, such as |+,+〉 and |−,−〉, or |+,−〉 
and |−,+〉 in terms of the spin states along the in-plane magnetic field, to form a Bell state or to 
build a logic gate. The intermediate states required were the singly excited trion states, such as 
|T+,+〉 and |−,T−〉, and the bi-trion state, |T+, T−〉. We proposed to use two strong resonant laser 
beams to form the dressed states of these three excited states and then to use two weaker and 
detuned beams to connect them to the pair of two-spin states concerned. The adiabatic passage 
would involve five dressed states with three of them minimally involved in the net operation. 
The two states involved were weakly connected to the strong optical decay, even though they 
were not dark states as in the Λ system. The design principle of the laser pulses was sufficiently 
long to avoid unintended dynamics but short enough to avoid too much optical decoherence and 
significant spin decoherence. 

Pulse design was first applied to the pair of states, |+,+〉 and |−,−〉 for a controlled phase gate, 
so as to help an experimental demonstration without the demand of single spin rotation of the 
initialized states. Simulation of the operation yielded results for the concurrence of the entangled 
state and the fidelity of the phase gate. Pulse design for the pair, |+,−〉 and |−,+〉, led to the 
simulation of a square-root swap gate which was entangling. The entanglement content and the 
quality of the final state were estimated by the concurrence and the purity (the trace of ρ2) of the 
final state density matrix ρ. They were highly dependent on the Coulomb interaction between the 
trions. For an interaction of 100 µeV, the concurrence is about 0.8 and the purity 0.9 but for a 
weak interaction of 20 µeV, these quantities drop by 50%. In the simulations, the experimental 
decoherence time of the trion was used and the unintended dynamics was limited by optimizing 
the detuning and the pulse strength and duration. These calculated results may help in the choice 
of procedure in experimental implementation. 

Quantum Theory of the Dot Spin Decoherence 

At the magnetic fields of several teslas used in the experiments, the two eigenstates of the 
spin are very robust, so that the decay time of the higher energy spin state to the lower one is 
sufficiently long for meaningful quantum information processing. However, coherence of a state 
which is a measure of the supposition of these two spin states, deteriorates much faster with time 
into two classical states with appropriate probabilities, a process known as decoherence. In our 
research into the spin decoherence, experiments led to conditions, such as the working 
temperature below 5 K and small energy between the spin states, under which all mechanisms of 
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decoherence, such as the effects of lattice vibration and the spontaneous emission into the 
electromagnetic vacuum, could be eliminated, except the fundamental one: the interaction of the 
electron spin with the nuclear spins in the same dot.  

We constructed a fundamental quantum theory of electron spin decoherence with mutually 
interacting nuclear spins [Phys. Rev. B 74, 195301 (2006); Phys. Rev. B 75, 125314 (2007)] 
without inserting the stochastic assumption by an explicit solution of the entangled state between 
the electron and the nuclear spins. The reversibility of the entire quantum system led to methods 
of regulating the nuclear ensemble by controlling the electron to remove the pure (not just 
inhomogeneous) decoherence of the electron [Phys. Rev. Lett. 98, 077602 (2007)]. 

The all-quantum theory of decoherence followed the time evolution of the whole system 
from a prepared product state of the electron spin and the nuclear bath to entangled states of the 
electron spin up and down states in a magnetic field with nuclear parts. The decoherence of the 
superposition of the electron spin up and down states at any time could be obtained by the 
reduced density matrix of the electron spin, which corresponded in an experiment to the 
beginning of a process towards a measurement. The solution of the whole system was given in 
the approximation of keeping only the correlation of nuclear spin pairs as well as the 
inhomogeneous distribution of the hyperfine interaction of the electron with the nuclear spins. 
An important find of his calculation alone was that spin echo removed not just the 
inhomogeneous broadening but also a significant portion of the pure decoherence. While this 
was observed in past experiments, this was the first quantum theory that explained these 
inferences of pure decoherence recovery. 

The approximation keeping only the pair correlation of the nuclear spins was justified in two 
ways. Theoretical estimates of the error in the illegitimate flip-flops of pairs of nuclear spin in 
the time of the inverse interaction energy of the nuclear spin-spin interaction is small. Thus, the 
flip-flops may be assumed to occur independent of one another. It follows that the nuclear spin 
pair correlation is well described by the rotational dynamics of the independent pseudo-spins, 
each consisting of a pair of flip-flop states. The effect magnetic field which governs the 
dynamics of each pseudo-spin is straightforwardly calculated from all the first principles 
interactions described above. The method yielded a simple picture of decoherence in terms of 
pseudo-spin rotations, which turns out to be an invaluable aid in designing measures of pulse 
sequence for the recovery from decoherence. 

For a GaAs or InAs dot, we studied the time dependence of the electron spin decoherence for 
a range of the applied magnetic field (1--40~T) in a range of temperature 10~mK--1~K, low 
enough to avoid phonon induced decoherence but still high enough to randomize the nuclear 
spins. We find time dependence of exponential decay in powers of time, tn, with cross-over 
behavior in different time regimes from one power of n to another (often 2 and 4) for both the 
single spin FID and ensemble spin echo profile. In both cases, the long-time behavior is a simple 
exponential decay (n=1). Because of the non-simple exponential decay, we define transverse 
electron spin relaxation T2

(1/e) as the time in which the electron spin coherence decreases by a 
factor of 1/e. The temporal behavior of single spin FID and that of the ensemble spin echo are 
different and are subjected to different predominant mechanisms. In an InAs dot, T2

(1/e) for the 
single spin FID shows a strong magnetic field dependence, and under one spin echo can be 
increased to over 1 µs below 10 T. The single spin FID is driven by the dipole-dipole and bulk 
excitation mediated nuclear spin-spin interaction and qubit spin mediated nuclear interaction at 
all fields while the spin echo signal involves little qubit mediated nuclear interaction. Details 
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including methods of composite optical pulses to recover spin coherence are in the long paper 
[New J. Phys. 9, 226 (2007)]. 

Hole Burning Proposal for Measurement of Spin Coherence 

Sham's and Steel's groups collaborated in 
establishing a spectroscopic method for 
measuring the decoherence times [Phys. Rev. B 
75, 085322 (2007)]. It involved the spectrum in 
the fifth order nonlinear optical processes. Two 
orders of the optical field were needed to 
produce the electron spin coherence (a coherent 
Raman process) which produced an 
inhomogeneously broadened line. Two more 
orders were needed to produce by hole burning a 
sharp dip whose frequency corresponded to the 
Larmor frequency of the electron spin in a single 
dot and whose line width was the pure 

decoherence time. The fifth order was the probe field. A calculated hole burning spectrum is 
shown in Fig. 14.  

A proposed weak measurement of spin decoherence 

The problem with the quantum measurement of a single spin is the weak interaction between 
the single spin and the measurement instrument. For example, in optical measurements, a probe 
laser pulse produces in the process at most one photon. Thus, the current practice in our 
collaboration is to repeat the coherent pump and probe processes numerous times and collect the 
photons for averaging. Repeating the process has the drawback of averaging over a distribution 
of scenarios including the initial states. For example, such a measurement would produce the 
inhomogeneous decoherence time T2

*. To obtain the intrinsic property of the spin state without 
inhomogeneous effects, we explored the quantum optics methods such as cycling transitions by 
exploring the auxiliary states of the spin in the same dot (Steel) and the auxiliary states of the 
optically excited trion in the measuring process in two coupled quantum dots (Gammon). 

We pursued the idea of changing the current practice of repeated pump and probe to a single 
pump and repeated probes. The signals of change in transmission triggered by the photons were 
then collected and processed for their correlations which may reveal the properties of the spin 
state.  The idea of finding correlations in these stochastic series of data was stimulated by Steel's 
group's experiment on noise spectra which yields T2

*. 
In a collaboration with Professors Renbao Liu and Alexander Korotkov, we chose to 

investigate the theory of measurement of a single spin using Faraday rotation. Because it 
involved linear optics, the experimental process was easier to simulate although the idea is 
equally applicable to the nonlinear change in transmission by coherent pump and probe method 
of Steel. While the Faraday rotation of a probe pulse due to a single spin is small (~ 10-5 radians), 
the coherent photon state simulating the probe pulse has a magnifying effect on the 
distinguishability of polarization rotation which might be measurable by the current technology.  

 
 

 
 

 

Figure 14.  The spectrum in the large frame is a sweep 
of the frequency of the optical field which participates 
in both the spin coherence generation and in the hole 
burning. The inset is a blow-up of the feature on the 
left of the spectrum. The dip in the middle is the hole 
burning of the single spin pure coherence spectrum.   
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The suggested measurement procedure is illustrated in Fig. 15. An electron spin state is initially 
normal to both a magnetic field and the optical axis. A periodic series of pulses are sent through 
the dot.  The coherent photon state representing each pulse suffers a Faraday rotation of its 
polarization by the electron spin into, say, 

€ 

+θ  state for spin up and 

€ 

−θ  for spin down. A 
polarized beam splitter (PBS) lets the pulse

€ 

+θ  pass but has only a small probability D   in 
reflecting the 

€ 

−θ  pulse but mostly (with a probability of 1- D) 

€ 

↓ ↓  lets it also transmitted. The 
measurement results may be summarized by a positive-operator valued measure (POVM) with a 
light pulse reflection operator caused by the down-spin, :

€ 

D↓ ↓ , and the transmission one due to 
the up-spin and the light due to the down-spin which failed to be reflected,

€ 

↑ ↑ + 1−D( )↓ ↓ . 
Photon counts of successful measurements of spin in ⎢↓〉 state occur stochastically like shot 
noise. Analysis of the time series yield the second order correlation function, g(2)(t), for the 
probability of occurrence of two signals with a time interval t. Since the spin is in free induction 
decay between two signals, the correlation function measures the decoherence as a function of t 
but with inhomogeneous broadening. The third order correlation function, g(3)(t1, t2), which 
measures the probability of occurrence of three signals with the time intervals t1 and t2, is free 
from the inhomogeneous effect when t1 = t2. Under this condition, the time dependence yields 
the pure spin decoherence time T2. Numerical simulation of the measurement process (Fig. 16) 
confirmed the above conclusions.  

 

 

Figure 15. The arrangement for periodic Faraday 
rotation measurements, taken from Ref. [2]. 

Figure 16. Contour plot of the envelope of the third 
order correlation time from a Monte Carlo simulation 
of the measurement [2]. 

High Precision Qubit Rotation Essential in Scalability 

Quantum Fourier Transform is basic to Shor's algorithm for factorization and to other related 
Hidden Group problems. Its implementation requires the ability to control rotation angle to the 
precision of 2π/2n , n being the number of qubits needed. The precision of this controlled 
operation presents then a limit to scaling the quantum computation to a required number of 
qubits. The situation is considerably eased by Don Coppersmith's approximation [arXiv:q-
ph/0201067] in which rotations of angles smaller than 2π/2m  with cutoff m = log2 (2n) may be 
neglected with a total phase error bound of 2πn/4m.  Fowler & Hollenberg [PRA 70, 032329 
(2004)] have improved the cutoff to scale more slowly with n, viz., m ~ log4 (2n). For example, 
the Fowler-Hollenberg requirement for minimum rotation angle is π/32 vs Coppersmith's π/1024 
for half a kilobit and an error about 0.3%. 
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Parin Dalal, [Ph. D. Thesis, Univ. of Calif. San Diego, (2009)], was key in developing an 
approach to overcome this important obstacle to scalable quantum computing – the limitation of 
precision operation for small angle rotation based on the quantum analog to a lookup table in 
classical computation.  The important results were: (1) The table consisted of a set of spins 
accurately aligned in a number of angles around the clock, say 64. By swapping operations, the 
spin angle could be transferred to the quantum dot spin where information processing was 
carried out. To achieve fault-tolerant swap, quantum coherent feedback was used, and the error 
was in the control of unitary operations. (2) The theory was extended to design general unitary-
fault tolerant, scalable computation processes. (3) A proposal was made for an experimental 
demonstration with our existing exciton platform. (4) A replacement of the time control of 
quantum operation by a spatial control but self-timed process was shown in theory to be capable 
of high precision quantum information processing.  

A quantum look-up table is composed of a list of qubit spins, each pointing at a fixed 
direction in the zx plane. A subset of the angles are selected from all the multiples of the 
minimum angle, 2π/2m/2, so that all the multiples may be optimally constructed from the table. If 
each spin is in its ground state, we have a Hilbert space of spin states whose local bases are all 
different. We found two conceptual methods of initialization to arbitrary angles by dot spin 
alignment by a slanted magnetic field with nanomagnets [M. Pioro-Ladrière et al., Appl. Phys. 
Lett. 90, 024105 (2007)] and by classical rotation of light polarization in a fiber as a geometrical 
phase [A. Tomita and R, Chiao, Phys. Rev. Lett. 57, 937 (1986)] which enables distant swapping 
of spins [W. Yao, R.-B. Liu, and L. J. Sham, Phys. Rev. Lett. 95, 030504 (2005)].  

Dalal constructed an algorithm using controlled swap operations for the look-up process. The 
resultant operation, |θ〉 → | ± (θ + α  + β)〉, α  and β being from the table, was an effective 
rotation without resorting to the usual rotational operator except at a large angle such as π/2 for 
the Hadamard transformation or spin flip. It was assumed that the spins in the table were lined up 
accurately to their angles with the precision higher than the minimum angle, such as π/32. For 
example, any angular state |θ〉 may thus be rotated by any multiple of π/32 up to 2π,  e.g., by 
breakdown 5π/32 to θ + π/8 + π/32, using the table entries π/8 and π/32. This algorithm 
contained fault tolerance by means of auxiliary qubits at different local bases, error corrections 
for every SWAP, diagnostic measurements of the auxiliary qubits at the end to test the quality of 
the output states, including ideas of quantum feedback of Lloyd [S. Lloyd, Phys. Rev. A 62, 
022108 (2000).] and the amplitude amplification of Brassard et al. [Gilles Brassard, Peter Høyer, 
Michele Mosca and Alain Tapp, arXiv quant-ph/0005055.] 

In simulation of the look-up process, the error models used include the phase noise arising 
out of coupling of the control field to a thermal reservoir [M.O. Scully and M.S. Zubairy, 
"Quantum Optics (Cambridge 1997).], the back action of the indirect measurements of the field 
variables [M.A.Nielsen and I.L. Chuang, "Quantum computation and quantum information" 
(Cambridge 2000).], and the stochastic fluctuations of the angles of the spins. [K.M. Frahm, R. 
Fleckinger and D.L. Shepelyansky, Euro. Phys. J. D 29 139 (2004).] The diagnostic test 
measurement can be over 98% successful in numerical simulations of the look-up process for 
quite large over and under rotation due to error and noise. 
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Optically controlled locking of the nuclear field via
coherent dark-state spectroscopy
Xiaodong Xu1*, Wang Yao4*, Bo Sun1*, Duncan G. Steel1, Allan S. Bracker2, Daniel Gammon2 & L. J. Sham3

A single electron or hole spin trapped inside a semiconductor
quantum dot forms the foundation for many proposed quantum
logic devices1–6. In group III–V materials, the resonance and coher-
ence between two ground states of the single spin are inevitably
affected by the lattice nuclear spins through the hyperfine
interaction7–9, while the dynamics of the single spin also influence
the nuclear environment10–15. Recent efforts12,16 have been made to
protect the coherence of spins in quantum dots by suppressing the
nuclear spin fluctuations. However, coherent control of a single
spin in a single dot with simultaneous suppression of the nuclear
fluctuations has yet to be achieved. Here we report the suppression
of nuclear field fluctuations in a singly charged quantum dot to well
below the thermal value, as shown by an enhancement of the single
electron spin dephasing time T2*, which we measure using coher-
ent dark-state spectroscopy. The suppression of nuclear fluctua-
tions is found to result from a hole-spin assisted dynamic nuclear
spin polarization feedback process, where the stable value of the
nuclear field is determined only by the laser frequencies at fixed
laser powers. This nuclear field locking is further demonstrated in a

three-laser measurement, indicating a possible enhancement of the
electron spin T2* by a factor of several hundred. This is a simple and
powerful method of enhancing the electron spin coherence time
without use of ‘spin echo’-type techniques8,12. We expect that our
results will enable the reproducible preparation of the nuclear spin
environment for repetitive control and measurement of a single
spin with minimal statistical broadening.

We performed the experiment on a single negatively charged
quantum dot embedded in a Schottky diode structure. Figure 1a
shows the four-level energy diagram of the trion states under an
external magnetic field perpendicular to the sample growth direction.
In the pump–probe experiment, two narrow-linewidth continuous
wave lasers selectively excite a three-level lambda subsystem, as
shown in the dashed box of Fig. 1a (ref. 17; see Methods
Summary). When the pump and probe lasers exactly match the
two-photon Raman resonance (TPR) condition, a coherent super-
position of the spin ground states are formed18. This is known as the
dark state19 and represents a coherent manipulation of the electron
spin in the frequency domain (a brief comparison of ref. 18 with the

*These authors contributed equally to this work.

1The H. M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA. 2Naval Research Laboratory, Washington DC 20375, USA. 3Department of
Physics, University of California San Diego, La Jolla, California 92093, USA. 4Department of Physics, The University of Hong Kong, Hong Kong, China.
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Figure 1 | Laser frequency sweep direction dependent probe absorption
spectrum. a, The trion energy level diagram with a magnetic field applied in
the Voigt geometry. The blue dashed box indicates the selected three-level
Lambda system. A strong pump beam is near-resonant with transition H1
and a weak beam probes transition V2. b, The probe absorption spectrum at

an external magnetic field of 1.32 T. The black (or red) curve represents the
probe absorption spectrum of the forward (or backward) scan. c, The probe
absorption spectrum as a function of the laser scan rate, indicated by the
lock-in time constant. The top red curve is the backward scan with a 1-ms
lock-in time constant.
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current experiment can be found in the Supplementary Informa-
tion). Because absorption of the probe laser by trion excitation
increases abruptly with detuning from the TPR, the generated dark
state is very sensitive to small changes in the nuclear field, which can
affect the TPR and hence can be used as an in situ probe of the nuclear
spin environment in a quantum dot20.

Figure 1b shows the probe absorption spectrum at a magnetic field
of 1.32 T. The black curve is the spectrum obtained by sweeping the
probe laser from low frequency to high frequency (the forward scan).
The red curve is the spectrum obtained by sweeping the probe laser
from high frequency to low frequency (the backward scan). The
narrow peak on the left and the broad peak on the right correspond
to transitions H2 and V2, respectively. We focus on the optical res-
ponse from transition V2.

Ideally, the overall lineshape of transition V2 should be
Lorentzian-like with a dark-state dip, as shown in Fig. 4a. How-
ever, the spectrum clearly shows a broadened lineshape with a round
top and sharp edges, which is far from Lorentzian. The width and the
strength of the dip corresponding to the dark state are also narrower
and shallower than expected. More remarkably, we observe hysteresis
at the sharp edges of the V2 absorption peak between the forward and
backward scans. Additionally, the spectral position of the dark state
in each scan is shifted in the same direction as the scan, which indi-
cates a change of TPR when the scan direction is switched. The
external magnetic field is unchanged in the forward and backward
scans, so these observations indicate that we optically create and
probe the dynamic nuclear spin polarization (DNP) in this charged
quantum dot system, where the nuclear spin configuration depends
on the laser sweeping direction.

The dependence on laser scan rate is shown in Fig. 1c. The dark
state becomes more pronounced, concomitant with a broader dip
width as we increase the laser scan rate (that is, the probe laser
frequency is held for a shorter interval at each value). Under faster
scans, the observed lineshape is closer to the standard dark-state
spectrum in a Lambda level scheme (compare Fig. 4a). As we show
below, the anomalous spectral features and their scan-rate depend-
ence reflect the dynamical control of the nuclear field by the laser
frequency scans on a timescale comparable to the nuclear spin relaxa-
tion time, which is of the order of a second12,14,16.

We performed a set of measurements by fixing the frequencies of
both lasers and recording the optical response as a function of time;
these measurements reveal that the DNP modifies the Zeeman split-
ting, via the nuclear field, to maximize the trion excitation. Figure 2a
shows the probe absorption spectra with forward (black) and back-
ward (red) scans. We begin by scanning the laser backward and
stopping the laser just before the sharp rising edge of the trion peak,
as shown by the green curve in Fig. 2b. We record the absorption
signal as a function of time with the laser frequency fixed. As shown in
Fig. 2c, the system remains in hysteresis state 1 for a while (shown by
the signal level) and then abruptly switches into hysteresis state 2,
where it remains. This signifies that the nuclear field switches to a
stable value that maximizes the trion excitation. Finally, we scan the
probe laser forward and find that the subsequent partial forward scan
spectrum (the blue curve in Fig. 2d) overlaps considerably with its
equivalent in the full forward scan.

We also examined the dynamics of the nuclear spin by monitoring
the dark state. As shown in Fig. 2e, after a full forward scan to locate
the dark-state position (black curve), we took a partial forward scan
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Figure 2 | Time-dependent probe absorption spectrum with fixed laser
frequencies. Data are taken at a magnetic field of 2.64 T. a, The black (or
red) curve represents a full forward (or backward) scan. b, The green curve is
a partial backward scan. c, The probe absorption signal taken as a function of
time immediately after stopping the laser just before the rising edge of the

trion absorption. d, The blue curve is the partial forward scan taken after the
switching of the hysteresis states. e, The black (or red) curve is the full
forward (or partial forward) scan. L, D and R denote three system
configurations. f, The absorption signal as a function of time, taken
immediately after parking the laser just before the dark state is formed.
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to prepare the initial nuclear spin configuration and stopped tuning
the laser just before the formation of the dark state (red curve).
Immediately, we measured the absorption signal as a function of time
(Fig. 2f). The system starts in configuration L, indicated by the signal
level, jumps into configuration D after some time, and then switches
to configuration R, where it remains at high probe absorption. In
experiments we noticed that the system can stay in the dark state D on
a timescale from a few seconds to 3 min, indicating the meta-stable
nature of the nuclear configuration at the TPR (see also the
Supplementary Information). Figure 2f shows an example in which
the system stays in the D configuration for ,40 s.

Power-dependent measurements of the dark state with a fast laser
scan rate provide frequency domain information on the electron spin
coherence time. Figure 3a shows the decreasing trend of the esti-
mated spin decoherence rate cs=2p with the increase of the square
root of the pump intensities. The black dots represent cs=2p inferred
from the absorption minimum at the dark-state dip (normalized by
the absorption maximum at the trion peak) and the blue triangles are
values extracted from the best fit of the dark-state spectrum including
the DNP dynamics. An example of the dark-state spectrum is given in
Fig. 3b (identical to Supplementary Fig. S1 with pump Rabi of
0:9 GHz). Details of the data analysis leading to Fig. 3a can be found
in the first section of Supplementary Information. For this time-
ensemble-averaged measurement of a single spin, cs

{1 corresponds
to the inhomogeneous dephasing time T2* because of the measure-
ment-to-measurement fluctuations of the nuclear field. For our dot,
we estimate the spin inhomogeneous broadening due to a thermally
distributed nuclear environment to be (360 6 30) MHz (refs 7, 21).
The dark-state spectrum clearly shows that the spin T2* has been
enhanced well above the thermal value. As we show later, the
enhancement of electron spin T2* is a natural result from the sup-
pression of nuclear spin fluctuations by the positive DNP feedback

process and the data in Fig. 3a is a lower bound of this enhancement
effect. This mechanism is in fact far more powerful in enhancing the
spin T2* than the preliminary results from Fig. 3a and b suggest, as we
will show using a different experimental set-up.

Both the rounded and broadened trion peak in the probe spectrum
and the switching behaviours at fixed laser frequencies indicate that
large trion excitation is favoured by the DNP process. When a trion is
excited, its two constituent electron spins form an inert singlet, leav-
ing its hole constituent to interact with the nuclear spins. This is a
unique element for optical control of the nuclear spin environment
while manipulating the electron spin, and it accounts for the experi-
mental observations here.

The hyperfine interaction between the hole spin and nuclear spin is
strongly anisotropic22,23. In particular, it has a non-collinear hyperfine
coupling term SX

h IZ
k , where SX

h is the heavy-hole pseudospin operator
along the field direction (X) and IZ

k is the nuclear spin operator along
the growth direction (Z). This interaction can flip a nuclear spin
without flipping the hole spin, costing only the nuclear Zeeman
energy: BvN<0:01GHz T-1 (refs 24 and 25). This process stands out
from the various DNP interactions because the small energy cost can
be directly compensated by the homogeneous broadening of the trion
state (,0.4 GHz), which is a lower-order process than the electron-
nuclear flipflops assisted by phonons or photons.

From Fermi’s Golden Rule, the nuclear spin flip rates are propor-
tional to rt,irt,f , where rt,i is the initial-state trion population and rt,f

is the final-state trion population after a nuclear spin flip (see details
in Supplementary Information). This is because SX

h IZ
k has non-zero

matrix elements only in the trion portion of the steady-state wave
function. The up and down nuclear spin flip rates are different,
because they change the electron Zeeman splitting—and hence the
two-photon detuning d from the TPR—in opposite ways, each of
which lead to different final-state trion populations rt,f . Clearly, the
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Figure 3 | The observation of the enhancement of electron spin T2*. a, The
estimated cs=2p from the two-beam dark-state spectrum with various pump
field strengths, where Io 5 2 W cm22. Black dots and blue triangles are
estimated from the dip-to-peak absorption ratio with error bars determined
from the measurement noise (see black error bar symbol in b) and from the
best fits of the spectrum by modelling the nuclear field dynamics (see
Supplementary Information), respectively. The dashed horizontal line
denotes the thermal value. The red dot is from fitting the three-beam

spectrum in c. b, An example of the dark-state spectra obtained by fast
forward scan in the two-beam set-up that yields the cs=2p value in a. The
yellow dashed line denotes the zero signal line. c, A three-beam
measurement with the schematic set-up shown in the inset. The solid blue
arrow indicates the spectral position of the second pump beam (also
indicated in b as a reference with the dashed blue arrow). d, Schematic
illustration of the self-locking DNP feedback process, which locks the
nuclear field to a stable value that maximizes trion excitation.
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one resulting in a larger rt,f always ‘wins’, that is, the DNP process
tends to maximize trion excitation. The net DNP rate is proportional
to rt(Lrt=Ld), which goes to zero at the maxima of the trion excita-
tion (also the position of strongest absorption), located at
d~+Vpump=2, where Vpump is the pump Rabi frequency (see
Fig. 4b). The DNP process functions as a restoring force around
the absorption maxima, such that when the laser is slightly detuned
from the position of the strongest trion excitation, DNP acts to adjust
the Zeeman splitting to maximize the trion excitation. We note that
the net DNP rate is also zero at the TPR because it is a local minimum,
which ties in with the meta-stable nature of the dark state observed in
Fig. 2f.

We numerically simulate the self-locking process by including
DNP into the optical Bloch equations (see Supplementary
Information). Figure 4c simulates the result for fast scans, and

Fig. 4d for slow scans, at magnetic field 1.32 T. The numerical simu-
lations qualitatively reproduce the important features of the experi-
mental observations. Figure 4e clearly shows that the resulting
nuclear fields differ greatly depending on whether the probe fre-
quency is scanned forward or backward, which explains the origins
of the edge hysteresis and the spectral shift of the dark state. We note
that the asymmetry between the forward and backward scans in
Fig. 2a is due to the pump detuning (see Supplementary Fig. S3a).

The self-locking effect described in the theory also leads to the
suppression of the nuclear spin fluctuations. Once the system has
switched to a configuration of maximum trion excitation, the elec-
tron spin Zeeman energy and hence the nuclear field are determined
and controlled only by the instantaneous laser frequencies, regardless
of the initial nuclear spin configuration before the scan starts. In this
regime, DNP can actively work to maximize the trion population,
and any nuclear spin fluctuations that shift the Zeeman resonance are
cancelled out through feedback via the DNP mechanism (Fig. 3d).
The quantitative enhancement of T2* by this mechanism is deter-
mined by the slope of the DNP rate as a function of detuning at the
locking points, that is, the two circled positions in Fig. 4b at
+Vpump=2. A larger slope means a stronger restoring force, and
hence a better locking effect (see Supplementary Fig. S3b, which is
qualitatively consistent with the trend shown in Fig. 3a). For spectra
discussed in Fig. 3a and b, the locking position of the nuclear field
follows the probe laser, which scans much faster than the DNP equi-
libration rate, so the suppression effect we obtained there is a lower
bound of the capability of this nuclear field-locking technique.

Consequently, if the pump and probe beams are fixed spectrally to
maximize the trion excitation, the nuclear field fluctuations should
be suppressed further than when the probe continuously scans, as in
Fig. 3b. Data taken using three beams (Fig. 3c) support this argu-
ment. The stronger pump 1 remains near-resonant with transition
H1 and the weaker pump 2 is tuned to transition V2 and fixed at the
spectral position that maximizes the trion absorption. The two
pumps lock the nuclear field to a constant value and suppress nuclear
fluctuations for the duration of the experiment. We use the weak
probe beam to generate the dark-state spectrum with a fast scan rate,
shown in Fig. 3c. The probe is weak and scans at a fast rate, so the
effect of the probe beam on the nuclear field can be ignored.

The resulting spectrum in Fig. 3c shows a cleaner dark-state line-
shape with a more pronounced dip than the two-beam dark-state
spectrum in Fig. 3b with comparable pump intensity, which confirms
that the nuclear field is locked by the two pumps. The dip strength
represents the electron spin T2* and the measured absorption at the
TPR approaches zero, so the data indicate a substantial enhancement
of the T2* in this two-pump set-up. It is challenging to extract an
accurate spin decoherence rate because the suppression of nuclear
spin fluctuations is so strong that the signal approaches zero at the
TPR. However, fitting the data with the standard two-beam optical
Bloch equation, the red curve on top of the data (fitting parameters
Vpump=2p5 0.9 GHz, ct=2p 5 0.4 GHz and dpump 5 230 MHz),
yields a value for cs=2p of the order of ,1 MHz with a 5 MHz upper
bound error bar, limited by the mutual coherence bandwidth
between the lasers. We can also estimate the T2* directly from the
absorption minimum at the dark-state dip, although this will not be
as accurate as the optical Bloch equation curve fitting because it does
not exploit all the data points. This dip-to-peak ratio estimation gives
a cs=2p of 2 MHz, which agrees with the optical Bloch equation fit.
The green curve on top of the data is a theoretical plot using the
thermal value of T2*, which clearly shows the strong enhancement of
the electron spin T2* by the DNP self-locking effect. The strongly
suppressed cs indicates that the intrinsic T2 could possibly be re-
covered by this nuclear field-locking technique. We expect that a
time domain measurement may more accurately show the dramatic
enhancement of T2* by the nuclear field-locking scheme described
above. Further measurements and theory to explore this potential are
in progress.
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Figure 4 | Theoretical explanation of the nuclear field self-locking effect
through the DNP feedback process. a, b, The calculated probe absorption
spectrum (a) and rt(Lrt=Ld) (b) by solving the three-level Lambda system
with pump on resonance in the absence of DNP. b shows the DNP acting as a
restoring force. The two stability regions corresponding to the absorption
maxima are labelled I and II. c, d, Numerical simulation results including the
self-locking DNP effects for fast (c) and slow (d) scan corresponding to a
magnetic field of 1.32 T. The black (or red) curve represents the probe
absorption spectrum of the forward (or backward) scan. e, The calculated
nuclear field corresponding to the slow scan. The positive (or negative)
nuclear field shifts the probe absorption spectrum to the blue (or red). a.u.,
arbitrary units.
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In conclusion, our results provide a simple but powerful method of
suppressing the nuclear spin fluctuations. Once the nuclear spin
environment is prepared by our nuclear field-locking method, it
may be possible to perform coherent manipulations of a single electron
spin for the entire duration of the intrinsic electron spin coherence
time, unaffected by hyperfine-interaction-induced inhomogeneous
spin dephasing.

METHODS SUMMARY
We give a brief review of the sample structure and experimental techniques,

which are explained in detail in refs 26 and 27. The sample contains InAs self-

assembled quantum dots grown by molecular beam epitaxy. The size of the dot is

about 3 nm in height and 15 nm in base diameter28. The sample is embedded in a

Schottky diode structure, so we set the DC voltage to charge only one electron

into the dot. We use the DC Stark shift modulation absorption technique to

achieve a high signal-to-noise ratio29. The modulation amplitude is large so that

the data correspond directly to absorption. The sample is held in a continuous

helium flow magneto cryostat. The magnetic field can be tuned up to 6.6 T. For
the quantum dot of interest, the electron in-plane g factor is 0.49 and the hole

in-plane g factor is 0.13. The experiment is performed at a temperature of ,5 K.

Two continuous-wave lasers are used in the experiment. As shown in Fig. 1a, a

strong pump (red arrow) is horizontally polarized and fixed to be nearly

resonant with transition H1 and the weak probe beam (green arrow) is vertically

polarized. In the experiment, the estimated pump Rabi frequency ranges from

,0.63 to ,1.35 GHz, and the probe Rabi frequency is fixed at ,0.24 GHz. Since

the polarization axis of the quantum dot is rotated about 20u away from the

laboratory frame owing to the heavy and light hole mixing30, the probe beam can

pick up both V2 and H2 transitions in a single scan. For the slow scan data shown

in the text, the probe laser frequency is held at each value for 4 s and each data

point is the integrated signal over the last 1 s of this interval.
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Dynamicsrevealed by correlations of time-distributed weak measurements of a single spin
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We show that the correlations in stochastic outputs of time-distributed weak measurements can be used to
study the dynamics of an individual quantum object, with a proof-of-principle setup based on small Faraday
rotation caused by a single spin in a quantum dot. In particular, the third order correlation can reveal the “true”
spin decoherence, which would otherwise be concealed by the inhomogeneous broadening effect in the second
order correlations. The viability of such approaches lies in that (1) in weak measurement the state collapse which
would disturb the system dynamics occurs at a very low probability, and (2) a shot of measurement projecting
the quantum object to a known basis state serves as a starter or stopper of the evolution without pumping or
coherent controlling the system as otherwise required in conventional spin echo.

PACS numbers: 76.70.Hb, 03.65.Ta, 42.50.Lc, 76.30.-v

The standard von Neumann quantum measurement may be
generalized in two aspects. One is measurements distributed
in time [1, 2], continuously or in a discrete sequence, as in
the interesting Zeno [1] and anti-Zeno effects [3]. Time-
distributed measurements intrinsically interfere with the evo-
lution of the quantum object [2]. Another generalization is
weak measurement in which the probability of distinguish-
ing the state of a quantum object by a single shot of mea-
surement is much smaller than one [4–8]. On the one hand,
weak measurement has very low information yield rate; on the
other hand, it only rarely disturbs the dynamics of a quantum
object by state collapse. As a combination of the two gen-
eralizations, time-distributed weak measurements have been
used to steer the quantum state evolution [9]. In this pa-
per, we show that the statistical analysis of time-distributed
weak measurements may be used to study the dynamics of
a quantum object [8]. The outputs of time-distributed mea-
surements bear the stochastic nature of quantum measure-
ments, so the standard noise analysis in quantum optics [10]
would be a natural method to be applied. Notwithstanding
that, we should emphasize that the stochastic output of time-
distributed weak measurement is not the noise in the sys-
tem, but an intrinsic quantum mechanical phenomenon. Re-
vealing quantum dynamics by correlations of time-distributed
weak measurements is complementary to the fundamental
dissipation-fluctuation theorem which relates correlations of
thermal noises to the linear response of a system [11–14].

To demonstrate the basic idea, we consider the monitor-
ing of coherent Lamor precession and decoherence of a sin-
gle spin in a quantum dot, which is relevant to exploiting
the spin coherence in quantum technologies such as quantum
computing [15–18]. The difficulty of studying the spin de-
coherence lies in the fact that the “true” decoherence due to
quantum entanglement with environments is often concealed
by the rapid “phenomenological” dephasing caused by inho-
mogeneous broadening in ensemble measurements (e.g., in
a typical GaAs quantum dot, the spin decoherence time is
∼ 10−6 sec, but the inhomogeneous broadening dephasing

time is ∼ 10−9 sec [16–21]). To resolve the spin decoher-
ence excluding the inhomogeneous broadening effect, spin
echo [16, 19, 21–23] and mode-locking of spin frequency [18]
have been invoked. In this paper, we will show that the spin
dynamics can be revealed in correlations of the stochastic out-
puts of sequential weak probes. In particular, the third order
correlation singles out the “true” spin decoherence. Unlike
conventional spin echo, the present method involves no ex-
plicit pump or control of the spin but uses the state collapse as
the starter or stopper of the spin precession.

We design a proof-of-principle setup (see Fig. 1) based on
Faraday rotation, which has been used in experiments for spin
measurements [18, 20, 21, 24, 25]. The probe consists of a
sequence of linearly polarized laser pulses evenly spaced in
delay timeτ. After interaction with a single spin (in a quan-
tum dot, e.g.), the light polarization is rotated byθ or −θ for
the spin state parallel or anti-parallel to the light propagation
direction (z-axis). The Faraday rotation angleθ by a single
electron spin is usually very small (∼10−6 rad in a quantum
dot [24, 25]), so the two polarization states of the light cor-
responding to the two different spin states are almost iden-
tical. Thus a detection of the light polarization is a weak
measurement of the spin. The light polarization is detected
by filtering through a polarized beam splitter (PBS) which is

correlation

photon counts

laser pulses spin in a dot

PBS

magnetic
field

data processing detector

z

x

FIG. 1: (Color online) A proof-of-principle setup for weak measure-
ment of a single spin in a quantum dot by Faraday rotation.
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alignedto let the light with polarization rotated byθ fully pass
through and the light with orthogonal polarization fully re-
flected. The light with Faraday rotation angle−θ is reflected
with probability sin2(2θ). For a smallθ, the average number
of reflected photons is much less than one, so in most cases, a
single-photon detector set at the reflection arm would be idle
with no clicks and one cannot tell which state the spin could
be in. The clicks of the detector form a stochastic sequence.
The correlations in the sequence will be analyzed to study the
spin dynamics, such as the precession under a transverse mag-
netic field and the decoherence. This proof-of-principle setup,
being conceptually simple and adapted from existing experi-
ments, is of course not the only possible implementation. For
example, one can use continuous-wave probe instead of pulse
sequences, interferometer measurement of the polarization in-
stead of the PBS filtering, polarization-selective absorption in-
stead of the Faraday rotation, and so on.

We shall derive from quantum optics description of the
spin-light interaction a weak measurement theory in the for-
malism of positive operator value measure (POVM) [1, 26].
Consider a laser pulse in a coherent state|α,H〉 ≡ eαa†H−h.c.|0〉
(wherea†H/V creates a photon with linear polarizationH or V)
and a spin in an arbitrary superpositionC+|+〉 + C−|−〉 in the
basis quantized along thez-axis, the initial spin-photon state
is

|ψ〉 = (C+|+〉 + C−|−〉) ⊗ |α,H〉. (1)

After interaction, the state becomes an entangled one as

|ψ′〉 = C+|+〉 ⊗ |α,+θ〉 + C−|−〉 ⊗ |α,−θ〉, (2)

where|α,±θ〉 ≡ eαa†±θ−h.c.|0〉 (with a±θ ≡ aH cosθ ± aV sinθ) is
a photon coherent state with polarization rotated by±θ. How
much the spin is measured is determined by the distinguisha-
bility between the two polarization states

D ≡ 1− |〈α,+θ|α,−θ〉|2 = 1− exp
(
−4|α|2 sin2 θ

)
. (3)

When the average number of photonsN̄ = |α|2 � 1 and the
Faraday rotation angleθ is not too small, the two coherent
states are almost orthogonal andD → 1, thus a detection of
the light polarization provides a von Neumann projective mea-
surement of the spin. For a single spin in a quantum dot, the
Faraday rotation angleθ is usually very small. For example,
in a GaAs fluctuation quantum dot [24],|θ| ∼ 10−5 rad for
light tuned 1 meV below the optical resonance with a focus
spot area∼ 10 µm2. The number of photons in a 10 picosec-
ond pulse with power 10 mW is̄N ∼ 0.5× 106. In this case,
D � 4N̄θ2 ∼ 2×10−4 � 1, the spin states are almost indistin-
guishable by the photon polarization states. After interaction
with the spin, the laser pulse is subject to the PBS filtering
which transforms the spin-photon state to be

|ψ′′〉 =C+|+〉 ⊗ |α〉t ⊗ |0〉r + C−|−〉 ⊗ |α cos(2θ)〉t ⊗ |α sin(2θ)〉r ,
(4)

where |β〉t/r denotes a coherent state of the transmit-
ted/reflected mode with amplitudeβ. Separating the vacuum

state|0〉r from the reflected mode and keeping terms up to a
relative errorO

(
θ2

)
, we write the state as

|ψ′′〉 =
(
C+|+〉 +

√
1−DC−|−〉

)
⊗ |α〉t ⊗ |0〉r

+
√
DC−|−〉 ⊗ |α〉t ⊗ |α sin(2θ)〉′r , (5)

where |α sin(2θ)〉′r denotes the (normalized) state of the re-
flected mode but with the vacuum component dropped. With
a probabilityP1 = D |C−|2 � 1, an ideal detector at the reflec-
tion arm will detect a photon-click and the spin state is known
at |−〉, while in most cases (with probabilityP0 = 1− P1), the
detector will be idle and the spin state is unknown but keeps
almost free evolution. In the POVM formalism [1, 26], the
Kraus operators for the click and no-click are respectively

M̂1 =
√
D|−〉〈−|, and M̂0 =

√
1−D|−〉〈−| + |+〉〈+|, (6)

which determine the (non-normalized) post-measurement

stateM̂0/1|ψ〉 and the probabilityP0/1 =

〈
ψ

∣∣∣∣M̂†0/1M̂0/1

∣∣∣∣ψ
〉
.

Between two subsequent shots of measurement, the spin
precession under a transverse magnetic field (alongx-
direction) is described by

Û = exp(−iσ̂xωτ/2) (7)

whereσ̂x is the Pauli matrix along thex-direction, andω is
the Lamor frequency. Coupled to the environment and subject
to dynamically fluctuating local fields, the spin precession is
always accompanied by decoherence. For simplicity, we con-
sider an exponential coherence decay characterized by a de-
coherence timeT2. In the quantum trajectory picture [5, 10],
the decoherence can be understood as a result of continuous
measurement by the environment, for which the Kraus oper-
ators for the quantum jumps with and without phase flip are
respectively [26]

Ê1 =
√
γ/2σ̂x, and Ê0 =

√
1− γ/2Î , (8)

whereγ ≡ 1 − exp(−τ/T2) � τ/T2 is the coherence lost
between two subsequent measurements. For a spin state de-
scribed by a density operator ˆρ, the decoherence withinτ leads
the state toÊ [ρ̂] ≡ Ê0ρ̂Ê†0 + Ê1ρ̂Ê†1.

To study the spin dynamics under sequential measurement,
we generalize the POVM formalism for a sequence ofn mea-
surement. To incorporate the spin decoherence in the density
operator evolution, we define the superoperators for the weak
measurement and the free evolution aŝM0/1[ρ̂] = M̂0/1ρ̂M̂†0/1,

Û [ρ̂] = Ûρ̂Û†, in addition to the decoherence superoperator
Ê defined above. For a sequence outputX ≡ [x1x2 · · · xn] as a
string of binary numbers, the superoperator,

M̂X = M̂xnÊ Û M̂xn−1 · · · M̂x3Ê Û M̂x2Ê Û M̂x1, (9)

transforms an initial density operator ˆρ to M̂X[ρ̂] (not nor-
malized) and determines the probability of the outputPX =

Tr
(
M̂X[ρ̂]

)
. With the POVM formalism, the spin state evolu-

tion under sequential measurement and hence the noise corre-
lations discussed below can be readily evaluated.
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FIG. 2: (Color online) The Monte Carlo simulation (solid oscillat-
ing curves) and the analytical result (envelopes in dashed lines) of
the 2nd order correlation function, calculated with distinguishability
D = 3×10−4, Lamor precession period 2π/ω0 = 3 ns and the interval
between two subsequent measurementsτ = 0.3 ns. In (a), no deco-
herence or inhomogeneous broadening is present (T−1

2 = σ = 0); In
(b), T2 = 200 ns butσ = 0; In (c),T2 = 200 ns andσ−1 = 10 ns. (d)
shows the stochastic output obtained in the Monte Carlo simulation.
The Monte Carlo simulation is done with 1010 shots of measurement.

To illustrate how a real experiment would perform, we have
carried out Monte Carlo simulations of the measurement with
the following algorithm: (1) We start from a randomly cho-
sen state of the spin|ψ〉; (2) The state after a free evolution
is Û |ψ〉; (3) Then the decoherence effect is taken into account
by applying randomly the Kraus operatorÊ0 or Ê1 to the state
(with normalization) with probability 1− γ/2 or γ/2, respec-
tively; (4) The measurement is done by randomly applying
the Kraus operator̂M0 or M̂1 to the state (with normalization)
corresponding to the output 0 or 1 (no-click or click), with
probability P0 or P1 given by the POVM formalism. Step
(2)-(4) are repeated for many times. The output is a random
sequence of clicks, as shown in Fig. 2 (d).

To study the correlation of the stochastic output, we first
consider the interval distributionK(n), defined as the proba-
bility of having two clicks separated byn− 1 no-clicks [10],

K(n) ≡ Tr
(
M̂[10n−11][ρ̂]

) /
Tr

(
M̂1[ρ̂]

)
, (10)

where 0n−1 means a string ofn−1 zeros. By a straightforward
calculation,

K(n) ≈D +D2

2
e−

nD
2

[
1 + e−

nτ
T2 cos

(
nωτ+

D
2

cot
ωτ

2

)]
,

(11)

up to O
(
γD2

)
andO

(
nD3

)
, for γ,D � ωτ < π. A successful

measurement at the beginning of an interval projects the spin
to the basis state|−〉 along the optical (z) axis. Then, the spin
precesses under the external magnetic field about thex-axis.
The interval is terminated by a second successful measure-
ment among the periodic attempts after a time lapse ofnτ.
The decay of the oscillation is due to the spin decoherence.
The overall decaye−nD/2 is due to decreasing of the proba-
bility of unsuccessful measurement with increasing time. The
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FIG. 3: (Color online) Contour plot of the envelope of the 3rd order
correlationG(3)(t1, t2), with parameters the same as for Fig. 2 (c). The
insets (a) and (b) show the oscillation details ofG(t1, t2) in the range
0 ns≤ t1,2 ≤ 30 ns and 90 ns≤ t1,2 ≤ 120 ns, respectively.

measurement also induces a little phaseshift to the oscillation.
Obviously, the smaller the distinguishabilityD, the less the
spin dynamics is disturbed by the measurement.

In experiments, often the photon coincidence correlation in-
stead of the interval distribution is measured. The second or-
der correlationg(2)(nτ) is the probability of having two clicks
separated byn−1 measurements [10], regardless of the results
in between,

g(2)(nτ) =
∑

x1,x2,...,xn−1∈{0,1}
Tr

(
M̂1x1x2···xn−11[ρ̂]

)
/Tr

(
M̂1[ρ̂]

)

=K(n) +

n−1∑

m=1

K(n−m)K(m)

+

n−1∑

m=2

m−1∑

l=1

K(n−m)K(m− l)K(l) + · · · . (12)

By Fourier transformation and summation in the frequency
domain,

g(2)(nτ) =
D
2

[
1 + e−n(τ/T2+D/4) cos(nωτ) + O (D)

]
. (13)

Thespin precession, the decoherence, and the measurement-
induced decay are all seen in the second order correlation
function [see Fig. 2]. Note that the overall decay of the in-
terval distribution manifests itself as a measurement-induced
dephasing of the oscillating signal in the correlation function.
The Monte Carlo simulation shows that 1010 shots of mea-
surement would yield a rather smooth profile of the spin dy-
namics, which requires a time span of about 3 seconds for the
parameters used in Fig. 2.

In addition to the decoherence due to the dynamical fluc-
tuation of the local field, there is also phenomenological de-
phasing due to static or slow fluctuations, i.e., inhomogeneous
broadening which exists even for a single spin since the se-
quential measurement contains many shots which form an
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ensemble.The inhomogeneous broadening is modeled by a
Gaussian distribution ofω with mean valueω0 and widthσ.
With the inhomogeneous broadening included, the ensemble-
averaged correlation function becomes

〈
g(2)(nτ)

〉
=
D
2

[
1 + e−n(τ/T2+D/4)−n2τ2σ2/2 cos(nω0τ) + O (D)

]
.

(14)
Sinceusuallyσ � T−1

2 , the decay of the 2nd order corre-
lation is dominated by the inhomogeneous broadening effect
[see Fig. 2 (c)].

To separate the spin decoherence from the inhomoge-
neous broadening, we resort to the 3rd order correlation
g(3)(n1τ,n2τ), the probability of having three clicks separated
by n1 − 1 andn2 − 1 measurements. The idea can be under-
stood in a post-measurement selection picture: After the first
click, the second click has the peak probability appearing at
an integer multiple of the spin precession period, so the coin-
cidence of the two earlier clicks serves as filtering of the spin
frequency and the third click would have a peak probability
appearing atn2τ = n1τ, similar to the spin echo. The 3rd or-
der correlation in the absence of inhomogeneous broadening
is g(3)(t1, t2) ∝ g(2)(t1)g(2)(t2). The ensemble-average leads to
(neglecting the measurement-induced decay)

〈
g(3)(t1, t2)

〉
∝ 1 +

∑

j=1,2

e−t j/T2−σ2t2j /2 cos
(
ω0t j

)

+
1
2

e−(t1+t2)/T2e−σ
2(t1+t2)2/2 cos

(
ω0(t1 + t2)

)

+
1
2

e−(t1+t2)/T2e−σ
2(t1−t2)2/2 cos

(
ω0(t1 − t2)

)
. (15)

Fig. 3 plotsG(3)(t1, t2) ≡
〈
g(3)(t1, t2)

〉
−

〈
g(2)(t1)

〉 〈
g(2)(t2)

〉
to

exclude the trivial background. Along the directiont1 = −t2,
the 3rd order correlation oscillates and decays rapidly (with
timescaleσ−1). But the oscillation amplitude decays slowly
(with timescaleT2) along the directiont1 = t2, as expected
from the last term of Eq. (15).

In conclusion, we have given a statistical treatment of se-
quential weak measurements of a single spin. The character-
istics of the weak measurement consist in the negligible per-
turbation of the spin state except for the projective state col-
lapse when the measurement is successful in identifying the
spin state. We show that the third order correlation reveals the
spin decoherence from the inhomogeneous broadening. The
theory presented here for sequential pulse measurement can
be straightforwardly generalized to continuous weak measure-
ment by letting the pulse separationτ → 0 while keeping the
average power of the light unchanged (i.e.,D/τ = constant).
In the proof-of-principle setup based on Faraday rotation, all
optical elements have been assumed ideal for conceptual sim-
plicity. An investigation of the defects, e.g., in the PBS and in
the photon detector, shows that they do not change the essen-
tial results presented here but only reduce the visibility of the
features. Details will be published elsewhere.
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Scalable quantum computers are analog machines whose operating precisions must scale

up with their size 1. This relationship between the number of qubits and the analog precision

required for useful quantum algorithms has been quantified and exploited in approxima-

tion algorithms 1–3. Prior to this approach of improving operational precisions, researchers

constructed a fault-tolerant quantum gate formalism 4–6 to measure and correct operational

error. This formalism is effective for large angle (∼ π/2) operations, particularly for a sub-

group called the Clifford group 6 which may be considered “digital.” However, it is unhelpful

for small angle rotations because the fault-tolerance threshold 3 is bounded by a 0.9999 op-

erational Fidelity 7, a Fidelity already distinguishing quantum phases separated by 1/128th

of a period. Thus, the scaling of quantum computers has reached an impasse: fault-tolerant

quantum operations do not improve quantum information unless quantum operations are

already precise enough to make them nearly superfluous by way of quantum approxima-

tion. Here we show an approach to create precise, general quantum operations, overcoming

noisy interactions by quantum coherent feedback 8 and amplitude amplification 9, 10. Instead
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of applying an accurate quantum field to generate the desired operation, coherent feedback

from the classically-aligned bases of qubits (not from the general quantum states) directs the

transformation of a particular quantum state by amplifying its desired components. Because

quantum bases can be aligned with non-linear, classical precision (e.g. the angle of an opti-

cal polarizer), basis-directed feedback leads to a new scale of operational precision. As an

example, we show how to implement the core quantum algorithms, Fourier transform and

amplitude amplification, scalably. This method applies generally to any high-precision quan-

tum operation needed and connects the fundamental quantum nature of phase evolution to

classical geometry.

Because quantum operations are linear, quantum signal-to-noise ratios usually scale linearly,

tracking the error of the control field. This is in stark contrast to the exponential signal-to-noise

ratios found in the non-linear transistors used for classical, digital computation. Quantum fault-

tolerance introduces non-linearity through indirect measurement attempting to collapse errant sub-

spaces or redirect them. A fault-tolerant quantum gate works by encoding a quantum state into

a redundant set of qubits, where the encoding ideally allows a measurement of any errors that

take place during the gate’s operation. The encoding is performed before the operation and subse-

quent partial measurements either herald a successful operation or identify (syndrome detection)

additional, corrective fault-tolerant operations to perform. But, the domain of its improvement is

practically limited by the structure of the measurement relative to the operation. Fault-tolerance

traditionally follows from the assumption of statistical independence of error. Though this affords

practical solutions for certain operations, including the Clifford group 11, 12, this assumption fails
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when the operational parameter is a phase 13. For example, the simplest fault-tolerant implemen-

tation of a π/128 rotation more accurate than the identity requires 31 operations, while ordinary

7-qubit Steane codes require hundreds of thousands of qubits 2. Other research to create high

precision operation by direct rotation is limited to deterministic errors 14–17, uses ensemble statis-

tics that are not scalable 18, requires multi-qubit encodings that either still require high-precision

pulse timings 19 or combats decoherence rather than imprecision 20. For many quantum systems,

system-environment noise is too small to decohere the system beyond the 0.9999 threshold Fidelity

alone. For example consider the following quantum computing system: qubits are represented as

electrons in singly-doped, self-assembled quantum dots, energy states are split by a magnetic field,

control is afforded by optically-induced Raman transitions, and environmental coupling is domi-

nated by the quantum dot’s nuclear spin-bath 21. Decoherence during operation does not depreciate

this system beyond 0.999999 Fidelity (since 0.1 − 1.0 ns laser pulses can perform π-rotations 21,

while transverse spin decoherence works on the order of 10 µs at low temperature22 and can be re-

stored on much longer timescale by controlling system-bath dynamics 23). Static operational errors

are similarly innocuous as previous work 14–17 has shown such errors as inhomogeneous magnetic

fields can be corrected when systematic. However, when the operational error is in dimensions

external to the total qubit space, like the macroscopic, classical control of a laser, the interaction

terms appears stochastic and the inherent imprecision 24 is linearly transferred into error.

On the other hand, the initialization and measurement of quantum systems, in which macro-

scopic, non-linear processes are available and essential, have seen drastic improvements in Fidelity

25. Traditionally, researchers distinguish these precisions from quantum operational precision, as
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classical versus quantum phenomenon. However, interactions like dipolar energy in a magnetic

field connect the O(3) topology in classical position space to the SU(2) topology of the quan-

tum two-state space. For example, because the orientation of a single two-level quantum system

can be arbitrarily defined, it has been convenient to think of a system of qubits as also arbitrarily

defined. Yet, because two arbitrarily-oriented qubits often exist in a common three-dimensional

spatial basis there is an explicit parametrization for quantum fields whose symmetry group respects

the global, spatial eigenbasis, and which interact with qubits in local, energy eigenbases. Every

quantum, microscopic interaction can be represented in a classical, macroscopic basis, so a specific

prescription for operations between locally-varying bases can directly convert classical informa-

tion into precise quantum control. Exploiting this degree of freedom fundamentally connects the

non-linear, classical nature of quantum bases with the linear, quantum nature of quantum states,

increasing precisions for a pseudo-continuous set of operations in the full Hilbert space.

1 Quantum Coherent Feedback with Locally-Variant Bases

A system considered for quantum computing may have the bases of all of its qubits oriented in

the same direction, i.e. the computational basis of this system is simply the global basis, denoted

by, Z , a tensor product of identical, local basis vectors. “Locally-variant” bases, denoted by E ,

refer to basis vectors that vary from one qubit to another due to a varying of the axes of asymmetry

creating their local energy splittings, for example the orientation of a magnetic field or crystal

direction. Likewise, fields or virtual particles mediating interaction between qubits with different

orientations in physical space must be parametrized by favoring the local basis states or not. We
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term the former a local-basis interaction and the latter a global-basis interaction.

An example of a global-basis interaction between qubits is Heisenberg exchange, where a

bases-invariant consideration of two spins, S(i), in the global Hilbert space leads to the interaction,

JZS
Z
(1) · SZ(2). Hence the spin operators for the Heisenberg exchange interaction are specified in

a global basis. On the other hand, local-basis interactions that mediate transitions between en-

ergy levels may track the orientation of the energy bases. For example, the anisotropic interaction

couples two spins through the locally-variant basis of the interaction, JESE(1) × SE(2), conditioning

the quantum trajectory about the classical geometry of the bases. In general, some particles or

fields mediating an interaction are local-basis interactions when the Cartesian axes of the inter-

acting qubits are connected by a macroscopic rotation. For example, photonic exchange between

two locally-variant qubits can effect a purely local-basis interaction with an optical fiber whose

precise, classically imposed Berry phase twists the locally-variant bases into equivalence from

the viewpoint of mediating photons 26. The physics of these interactions are further explained in

Supplementary Discussion A.

While an external control field may initiate and terminate interactions between qubits, quan-

tum coherent feedback formalizes how one set of quantum bits can “sense” and coherently encode

the operation to be performed on other qubits 8. What follows is an alternate formulation where the

locally-variant bases of a set of quantum bits can encode the desired quantum operation given their

precise initializations, using only “digital” interactions from the Clifford group. Previous attempts

to digitize quantum computing were too rigid to overcome the Gottesman-Knill theorem 27, which
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states that with initialization and measurement in one computational basis, quantum operations

limited to the Clifford group can provide no exponential speedup over classical computation. Here

we show that, when there are two computational bases, even though all operations may be lim-

ited to Clifford operations in a given basis, these operations can implement Shor’s factoring and

Grover’s search globally.

Consider without loss of generality the above quantum dot model with two different qubit

swap operations represented by a completely global-basis interaction, HZ , and a completely local-

basis interaction, HE ,

HI = γ1 (t)H
Z + γ2 (t)H

E , (1)

where the precision of the interaction depends on the timing and strength of the control fields, γi (t).

If the magnetic field of the first qubit is oriented in the +ẑ direction and the field of the second qubit

is oriented at a polar angle α to the +ẑ direction, we can rotate the quantum ground state of the first

qubit by applying the two swap operations consecutively This process is illustrated in Figure 1(a)

where the local energy and global spatial bases are denoted with the superscripts α and z. We can

write this operation using a convenient short-hand where we characterize a spin state on the Z−Y

great circle of a local-basis Bloch sphere with its azimuthal angle, θ: |θ〉z |0〉α → |θ − α〉z |α〉α.

Note that the non-interacting Hamiltonian term creates local-basis precessions in each qubit which

do not necessarily commute during the time of operational pulses. That the precessions have

negligible effects on Fidelity in fast operations are shown in Supplementary Discussion B. The

Area theorem 28 allows for the appropriate pulse-shaping to minimize the bandwidth of the control

field. By exploiting the precision of initialization, the precision of basis alignment, the fault-

6



tolerance of Clifford operations, and by recognizing a difference between global-basis and local-

basis interactions, a prescription for the precise rotation of an arbitrary qubit by a single angle is

realized.

It is a small step to formulate a scalable, fault-tolerant quantum Fourier transform circuit as in

Figure 1(b). The seven controlled rotations per qubit required for the transform 2 are implemented

using the doubled swaps with a third qubit controlling each interaction. This type of three-qubit

interaction can be easily be decomposed into fault-tolerant, two-qubit Clifford gates, but it is phys-

ically natural to operate directly since one qubit may control the interaction medium as resonant or

non-resonant with the desired operation 29. Then, each of seven control qubits initialized to their

ground state, a binary product of seven angles states ⊗7
i=1 |π/2i〉

Z in the spatial basis, may condi-

tionally rotate any of the n qubits as directed by the approximate quantum Fourier transform 1, 2.

We show in the next section that any scalable quantum algorithm (one admitting a polynomial ap-

proximation of the exponential phase) can be implemented as an extension of quantum amplitude

amplification.

2 Amplitude Amplification with Locally-Variant Bases

One may create exponential parallelism in the use of base angles in much the same way Hadamard

operations create parallelism in the use of quantum states. The seed operating step in this process,

A2, is an S-matrix scattering event between two angles, which we term a “quantum-walk on a

Bloch sphere,” given by the equation (2).
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A2 |θ0〉 |θ1〉 ≡ exp


i



0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


π

4


|θ0〉 |θ1〉 (2)

=
1√
2



cos θ0+θ1
2

sin θ0+θ1
2

sin θ0−θ1
2

cos θ0−θ1
2


. (3)

This analogous to quantum-walks on lattices30, where an exponential number of lattice steps may

be taken in parallel in linear time. Supplementary Discussion C shows that this operation is eas-

ily made fault-tolerant and can be cascaded for application to an arbitrary number of qubits to

traverse an exponential number of angle states with a linear number of operations. This traver-

sal, parametrized by the angles θi, is illustrated on overlaid, disconnected Bloch spheres in Figure

2. The resultant wavefunction is restricted to an SU (2m−1) subspace of the total Hilbert space,

SU (2m). Any state that lies outside this Hilbert subspace is errant, thereby suggesting a secondary

system of fault-tolerance for a certain set of errors.

The qubit with initial state, |θ0〉, is considered the system qubit and the remaining the control

qubits. Then any angle state, if it can be coherently amplified, may be entangled with the state of

any other qubit, thereby supporting any scalable quantum algorithm. To amplify one disconnected

Bloch sphere completely, we extend the quantum amplitude amplification algorithm in three ways:
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use amplification to search for a quantum operation rather than a quantum state, initialize the

amplification from a locally-variant zero quantum state instead of a global one, and implement

the amplitude search “differentially” to increase the usable quantum information content and a

produce immunity to a type of quantum error. This method is illustrated in Figure 3 where two

control qubits, m = 2, are used to search for and perform an exact rotation operation, R (α + β),

applied to the quantum state, |θ〉. The details of how this quantum circuit coherently amplifies any

given angle state is explained in Supplementary Notes A. The number of qubits may be extended

arbitrarily as with the amplitude amplification algorithm. The term “differentially” is used in the

sense of traditional circuit design, where the input is a symmetric difference between two analog

signals. In the quantum analog, the input to the search is two qubits with the state (|−θ〉 , |θ〉) and

output is two qubits (|− (θ + α + β)〉 , |θ + α + β〉). Certain common-mode, under-over rotation

noise between the two differentials tracks may be eliminated as explained in Supplementary Notes

A.

A simulation of this circuit with noise simultaneous applied to all operations is detailed in

Supplementary Notes B. It is seen that the expected precision gains from traditional quantum fault

tolerance of Clifford operations indeed apply to the small rotations performed by this circuit.

3 Conclusion

Our technique breaks with the traditional formalism of creating a universal set of gates to abstract

physical technologies from quantum algorithm architectures. The simplicity afforded by universal
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quantum gates unfortunately also creates unwieldy structures for fault-tolerance, which we have

demonstrated are unnecessary for quantum computing. A non-universal quantum system, where

quantum information may be encoded in both spatial and temporal degrees of freedom, may be

superior to a universal quantum system with only pulse-encoded operations. Finally, our work

shows that quantum Fourier transform can be written as a specific case of amplitude amplification

with locally-variant bases, thereby suggesting a relation between the two major families of algo-

rithms typified by factorization and by search. Our theory can be tested upon today’s experimental

computing platforms supporting two qubits or more with the availability of two distinct bases for

each locality which are classically parametrized.
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Figure Legends

Figure 1: Precision rotation through feedback of locally-variant basis to produce cross-

section of quantum Fourier transform

a. To add a classical angle, α, to a quantum angle, θ, one can twice swap two quantum dots whose

energy splitting asymmetries (e.g. magnetization axes) may be at very precise relative angles, il-

lustrated by dotted lines on the Bloch spheres and vectors for two unentangled qubits. The first

swap respects a common spatial basis, for example the optical z-axis, while the second swap re-

spects the local energy bases of each respective quantum dot. The control qubit, in the α-aligned

basis, is assumed to be precisely initialized to its local ground state, as denoted by its initial Bloch

vector. The system qubit is oriented at some arbitrary, unknown angle, θ. We have defined this

“double-swap operation” with diamonds in place of direct product symbols. The text “+” and “-”

in the diamonds are only a diagrammatic tool, if we were to reverse the operation, do an local

swap followed by a global-basis swap, the “+” and “-” would flip positions in the application of

α. b. This panel depicts the cross-section of operations performed on each qubit in a quantum

Fourier transform using only Clifford operations and locally-variant bases. The four top qubits

depict four of the seven required control qubits for approximate quantum Fourier transform and

are oriented at the binary fractions of: π/4, π/8, π/16, and π/32, to encode the operation required.

The bottom dots represent the controlled operations from other neighboring qubits not pictured in

this cross-section conditioning the swap operations described in Figure 1(a).
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Figure 2: Quantum walk on Bloch Spheres

An exponential number of rotation operations are performed in the full Hilbert space of three qubits

using three operations but can be scaled arbitrarily. The output of the quantum circuit is a traversal

of four rotations on four topologically disconnected Bloch spheres that have been drawn overlaid

to illustrate the quantum walk from the original angle θ to |θ − α− β〉, |θ − α + β〉, |θ + α− β〉,

and |θ + α + β〉 in parallel.

Figure 3: Differential Amplitude Amplification of an Operation

This circuit adds the angle α + β to the differential qubit (|−θ〉 , |θ〉) input to the system by using

only Clifford operations and produces the differential output (|− (θ + α + β)〉 , |θ + α + β〉). Four

control qubits are initialized to |0〉 within their local basis. Operations that are represented in the

global basis, Z , are shaded darkly (brown), while operations that use the local energy basis, E , are

shaded lightly (green). The control qubits may be measured to be zero with probability greater than

0.9999 (see Supplementary Figure 4(c)). The details of the circuit are discussed in Supplementary

Notes A.
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Supplementary Figures and Legends

(a) Engineering a local-basis interaction (b) Energy level transition structure for a single
self-assembled QD trapping an electron and a
control �eld

Supplementary Figure 1 � Example of local-basis interaction
a. The design of a local-basis interaction which produces a quantum swap operation. The electrons localized in two
quantum dots (QDs) form a two-qubit system. The di�ering, but co-planar, magnetic polarizations of two nano-
magnets de�ne the local bases, #1 (solid lines) and #2 (dotted lines), of the operation. To perform the operation,
locally-polarized laser beams excite locally-oriented quantum cavities that contain the quantum dots. The subsequent
quantum evolution of the system creates a procession of the lasers' number states with the spin-state of the quantum
dots. The two cavities can be coupled by optical �ber, as shown, to macroscopically twist the two local-bases into
polarization equivalence. For example, this operation will be stationary, aside from a non-local phase, when the two
qubits are both �spin-up� (or any identical quantum state) in their local basis. Additionally, an exchange interaction
between the two electrons (see for example [1]) allow these same qubits to interact conventionally, i,e. global-basis
interaction. b. Transitions relevant to the local-basis interaction for each local quantum dot-�eld system are sketched.
In a local magnetic �eld the electron spin states and the trion spin states are split by the Zeeman energy ωe and
ωh respectively. The trion sub-levels are separated from the single electron sub-levels by the exciton energy ωT . The
allowed optical transitions for the two orthogonal polarizations, H and V, in each local basis are shown by arrows.
The cavities modes are designed to resonate only with the |−〉 ↔ |T−〉 transition. The qubit is encoded in the spin
states of an electron, |+〉 and |−〉, while the negative trion states, |T+〉 and |T−〉, are utilized as mediating axillary
states.
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(a) Contour plot of Fidelity for swap in Z basis with local Larmor precession

(b) Cli�ord Decomposition of AZ
2

Supplementary Figure 2 � Properties of Cli�ord operation in local basis
a. The decreased Fidelity of a swap operation between qubits of locally-variant basis is plotted. The horizontal
axis sets the angle between the local bases, while the vertical axis sets the ratio of Larmor precession period to
the operational pulse time. As shown, at pulse speeds 150 times faster than the Larmor precession, the Fidelity is
kept above 0.9999. Moreover, for the small angles used in precision rotation, a ratio of 50 is more than su�cient.
b. This �gure shows that the fundamental quantum operation in the quantum walk on a Bloch sphere, AZ2 =

(P0 ⊗ I + P1 ⊗X)
†

(H ′ ⊗ I) (P0 ⊗ I + P1 ⊗X), is a Cli�ord operation. In the diagram msqb and lsqb refers to the
most and least signi�cant qubit respectively. P1 and P0 are projectors onto the logical zero and logical one subspaces
respectively. The operation H ′ is the alternate Hadamard transform, H ′ = 1/

√
2 (|0〉 〈0| − |1〉 〈0|+ |0〉 〈1|+ |1〉 〈1|),

and the operation X is the π-gate, X = |1〉 〈0| − |0〉 〈1|. All decomposed operations have been represented in the
Z-basis.
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Supplementary Figure 3 � Simulation of circuit in for θ = π
2

To help understand the quantum circuit in Figure 3 of the main text, the amplitudes of each eigenvector in the
local basis are plotted after each labeled step. For simplicity we chose θ = π/2, α = π/3, and β = π/6, though
similar dynamics occur for any angle. The composite circuit applies a π/2 rotation. a. A plot of amplitude intensity
(phase is ignored) for each of 64 eigenvectors of the total system before and after each of six major steps. The
actual amplitudes (phase is ignored) are plotted in b1-b7. The initial amplitude is |π/2, 0, 0,−π/2, 0, 0〉 and the �nal
amplitude is |π, 0, 0,−π, 0, 0〉 = − |1, 0, 0, 1, 0, 0〉
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(a) Probability of measuring control bits
correctly (error in Swap)

(b) Fidelity of circuit (error in Swap) (c) Probability of measuring control
bits correctly (error in all operations)

(d) Probability of measuring control
bits correctly (error in A2)

(e) Fidelity of circuit (error in A2) (f) Fidelity of circuit (error in all ope-
rations)

(g) Probability of measuring control bits
correctly (error in Angle Selection and
Re�ection about θ)

(h) Fidelity of circuit (error in Angle Se-

lection and Re�ection about θ)
(i) Fidelity of circuit (error in all ope-
rations)

Supplementary Figure 4 � Simulating Unitary Error
A pair of plots are given for four di�erent classes of error when the control qubits are swept as α = [−π/4, π/4] and
β = α/2. The vertical axes in one set of plots is given by the probability that one will successfully measure a zero in
the control qubits, Pr (0, 0) at the end of the quantum circuit. The vertical axes in the other plots the Fidelity that
the circuit performed the correction rotation, F , given that the above successful measurement occurs. The horizontal
axes specify the domain of α and a unitary error (under-over-rotation angle), ε. The initial di�erential state is set
arbitrarily to |π/8〉 |−π/8〉. All operations here are Cli�ord and are assumed to be equipped with traditional Quantum
Fault Tolerance as explained in Supplementary Notes B. The accuracy of the total circuit is plotted when unitary
error is present in all the operations of swap (a, b), A2 (d, e), Angle Selection and Re�ection about θ (g, h), and
�nally in aggregate (c, f). Asymmetries arise due to the non-locality of the A2 operation (d, e) versus the locality
of the desired rotation. This non-commutation gives rise to a preferred direction of angular error. The �nal contour
plot (i) shows that unitary error of ±π/32 in all operations will still produce a Fidelity of 0.9999.
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(a) Fidelity of circuit (error in Swap) (b) Fidelity of circuit (error in A2) (c) Fidelity of circuit (error in all ope-
rations)

Supplementary Figure 5 � Fidelity without applying quantum fault tolerance to operations
In these �gures no traditional fault tolerance is applied to any of the Cli�ord operation composing the circuit. The
vertical axes plot the Fidelity that the circuit performed the correction rotation, F , given that successful measurement
of the control qubits occurs. The horizontal axes specify the domain of α and a unitary error (under-over-rotation
angle), ε. The initial di�erential state is set arbitrarily to |π/8〉 |−π/8〉. The Fidelity of the total circuit is plotted
when unitary error is present in all the operations of swap (a), A2 (b), and �nally in aggregate for all operations (c).
The unitary error in the swap circuit dominates the other errors when left unchecked (without traditional quantum
fault tolerance).

Supplementary Discussion A :

Designing a local-basis interaction

Consider two qubits encoded in the spins of electrons localized in two self-assembled QDs. Spins in each dot can
be controlled by external optical pulses [2] and information between between the dots is transferred through a photon
wave packet [3, 4]. Below we recapitulate the results of [4] emphasizing the operational basis.

The local energy basis in each dot is determined by the direction of a local magnetic �eld, for example, from
a nanomagnet. The corresponding qubit states are |+〉E and |−〉E . Additionally negative trion states, |T+〉E and
|T−〉E , formed by an electron singlet and a heavy hole, can be coupled to the qubit states by optical excitations to
engineer the operation. This coupling is accomplished using speci�c optical polarizations [5]. We assume the QDs to
be in the Voigt geometry (the local magnetic �eld is orthogonal to the optical axis). The energy level and excitation
selection diagram of a single dot and control �eld are given in Supplementary Figure 1(b). The directions of two
orthogonal polarizations H and V, in general, are determined by the orientation of the local magnetic �eld.

The two dots connected by an optical �ber are considered in a planar geometry, see Supplementary Figure 1(a).
The local bases are de�ned by the common optical axis (Z-axis) and the local polarizations, H and V, given the local,
macroscopic anisotropies of the microcavities and the nanomagnets. Embedding each dot in into a 2D microcavity
enhances the coupling between the dots and the �ber and sets additional constraints on the polarization of photons
transmitted through the �ber. The microcavities support V- and Z-polarized photons only. However, due to large
heavy-light hole splitting in the QDs onlyV-polarized photons may be strongly coupled to the heavy hole trions.

The quantum swap operation may be presented as follows. In a single dot, an external H-polarized optical pulse
excites the |+〉 ↔ |T−〉 and the |−〉 ↔ |T+〉 transitions. However, only the |T−〉 state is strongly coupled to the
V-polarized photon in a cavity. Prior work [4] shows that an optical pulse of the excitation frequency, of a rather
general shape, will swap the qubit state and a cavity photon as

(α|+〉+ β|−〉) |0V〉 −→ |−〉 (α|1V〉+ β|0V〉) . (1)

This operation is designed to swap a qubit state, de�ned in a local basis, with a photon number state. And, a similar
gate may be applied to swap a photon number state with the local qubit state of another dot. In particular, a
half-area pulse results in a qubit-photon Bell state. The cavity-�ber coupling is designed to be of a linear form (does
not change any photon polarization). However, the optical �ber macroscopically rotates the polarization of transient
photons from one local basis to another. In general, a photon propagating through a twisted �ber obtains a Berry
phase [6, 7]. Because the rotation angle is proportional to the macroscopic integrated helicity-�ber direction product,
the �ber connection can be designed to rotate the photon polarization precisely from one local basis to another.
Any imprecision in polarization that results from the �ber will be a static, systematic error. This can be corrected
completely using traditional techniques, e.g. [8]. Thus, the conclusions of [4] about robustness and high Fidelity of
the gate are applicable to the local basis swap operation in the local basis.
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Local interactions can be signi�cant when considering noise in quantum operations. A quantum operation using
coherent feedback upon a qubit is de�ned by both an operating �eld plus the state of at least one other qubit,
the control qubit [9]. However, when coding the quantum operation against noise, there is a distinction between
feedback from their quantum bases rather than their wavefunctions. Because the ground-state of a qubit is local
and macroscopically precise it can encode an operation more precisely than a quantum dynamical variable. In this
respect the ground state of a quantum system plus states generated from fault-tolerant Cli�ord operation may be
used for better source coding of algorithmic information. The main text of the paper shows that precise local-basis
interactions (Cli�ord quantum �eld plus feedback from qubits in ground state of locally-variant bases) combined
with precise global-interactions (Cli�ord quantum �eld plus feedback from variant qubits within a common basis)
lead an operational set that covers the core quantum algorithms.

Supplementary Discussion B :

Operations between qubits with non-commutative precession

We calculate the Fidelity of a swap operation between qubits with locally-variant bases but which evolve under
a common control �eld. In particular, we calculate the operation when each qubit is initialized to its local ground
state. Because the Larmor precession of one of the two-level systems does not commute with the other, only a subset
of quantum operational dynamics between the two level systems will have high Fidelity. Intuitively, if the desired
operations are fast enough then the precession should have little e�ect. The following simulation answers the two
questions : (1) how fast does the operation need to be with respect to the rate of Larmor precession and (2) how
does that speed depend on the azimuthal angle between the two local bases. For the quantum swap operation, we
calculate greater than 0.9999 Fidelity for pulse speeds 150 times faster than the Larmor precession for any angle.

If we begin with two qubits each within their own local two-level basis, we must start with a generalized Hamil-
tonian

H = µS1 ·B1 + µS2 ·B2 +
iΩ

2

(
|↑, ↓〉 〈↓, ↑|Z + |↓, ↑〉 〈↑, ↓|Z

)
, (2)

where the control �eld (to swap the two qubits) references a common ẑ spatial direction. In this common basis, Z
(not the local bases), the generator of the above swap interaction appears without any local angle and is given by

G =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 . (3)

Without loss of generality, we orient the �rst qubit to have magnetic �eld oriented in the +ẑ direction, the second
qubit's �eld is oriented at an angle θ to that direction, to produce the Hamiltonian

H = µS1
zB + µS2

zB cos θ + µS2
yB sin θ +

Ω

2
G. (4)

Going into the co-rotating frame ψ′ = e−iS
2
θωte−iS

1
zωtψ, we examine the e�ect of the local basis on the swap operation

∂tψ
′ = i

Ω

2

(
e−iωS

1
zte−iωS

2
θt [G] eiωS

2
θteiωS

1
zt
)
ψ′. (5)

The equations of motion are then given by ∂tψ
′ = iΩ

2QGQ
†ψ′. We numerically solve this di�erential equation and

plot the Fidelity, F =
∣∣∣〈e−iGπ/2 ∣∣∣e−iQGQ†π/2〉∣∣∣, in Supplementary Figure 2(a). If the pulse speed is 300 times faster

than the Larmor precession frequency (as in trion-trion operations) the rotation angle is irrelevant. If the rotation
angle is very small, then operational speed need not be much faster than the Larmor precession.

Supplementary Discussion C :

Fault-Tolerance of scattering amplitudes

The operation, AZ2 , is based on the π/4 rotation of the Pauli-Y operator in both the local and non-local basis. By
their de�nition, the Cli�ord operators include the Hadamard and controlled-not gates. We show the operation AZ2
is decomposed into these operators in Supplementary Figure 2(b) and hence it is a Cli�ord operation that can be
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easily made fault-tolerant. For example, the seven-qubit Calderbank-Shor-Steane (CSS) code [10, 11, 12] can fault-
tolerantly implement any Cli�ord gate tranversally. Given a particular noise structure and/or scaling requirements
more economized codes like [13] are available as well.

When performed pairwise on a consecutive set of m qubits, the scattering operation, A2, generates all M = 2m

permutations of adding and subtracting the angles {θi|i ∈ (1 . . .m− 1)} to the �rst angle θ0. Or more formally, if we
represent the Hilbert space vectors with the binary label j = jm−1 . . . j1j0 as commonly represented in the Quantum
Fourier Transform, we can write the operation as

AZm

m−1∏
i=0

|θi〉Z =
1∑

j1,j2,...,jm−1=0

cos
ξj + θ0

2
|f (j)〉Z + sin

ξj + θ0

2
|g (j)〉Z (6)

where ξj = (−1)
jn θm + . . .+ (−1)

j1 θ1 and the functions f and g map integers to two particular Grey Codes. When
done fault-tolerantly, the amplitudes for every pair of eigenstates(|f (j)〉 , |g (j)〉) can be parametrized by a point on
a Bloch sphere. Therefore, the resulting wavefunction is an exponential traversal of rotations on M/2 topologically
disconnected Bloch spheres.

Supplementary Notes A :

Di�erential amplitude ampli�cation of an operation

To explain the mechanics of the Di�erential Amplitude Ampli�cation circuit as shown in Figure 3 of the main
text, we make use of the example case : θ = π/2, α = π/3, and β = π/6. In this example, the initial unknown,
di�erential qubit occupies the state

∣∣π
2

〉 ∣∣−π2 〉, and the control bits are initialized to their local ground states,
∣∣π

3

〉
and∣∣π

6

〉
. The goal of the circuit is to rotate the initial system state, |θ〉, using the control qubits to amplify the operation,

R
(
π
3 + π

6

) ∣∣π
2

〉 ∣∣−π2 〉, so producing the end state |π〉 |−π〉. The circuit's progression towards this goal is shown in
Supplementary Figure 3 using the absolute amplitudes for each of the 64 eigenvectors in the Z-basis comprising the
six-qubit quantum system. The �rst step is to generate a di�erential set of angles labeled �Seeding the table�. In
one di�erential track all the qubits share a common local and global basis, while in the other each of the control
qubits have a di�erent orientation angle. As in Figure 1(a) of the main text, if θ equals zero, a swap in the global
Z basis produces the di�erential signal for |α〉E . Hence, swapping each di�erential pair of control qubits creates a
di�erential set of angles in the local bases of the control qubits. For the example case, this transforms the amplitudes
of the initial state in Supplementary Figure 3(b1) to the amplitudes given in Supplementary Figure 3(b2). Next, the
scattering operation, Am+1 is applied in the local energy bases, E , to all the qubits in each di�erential track (the initial
unknown wavefunction and its neighboring control qubits), as shown in Supplementary Figure 3(b3) for the example.
In this fashion, we generate a repository of 2m angles with the ground state of m locally-variant qubits. Next, the
�angle selection� step derives from the oracle-call prescription used in the Grover algorithm [14], but in this case the
sub-circuit �ips the phase of the classically-known, desired operation. Although one angle, θ + α + β, is selected in
this example by a controlled-controlled-Z operation as in Supplementary Figure 3(b4), to produce high operational
complexity a coherent superposition of selections could create a coherent superposition of rotation operations. As
necessary in amplitude ampli�cation, the selection process is followed by the Hermitian conjugate of the quantum walk
and seeding operations [15]. This is labeled a �reverse walk� since it inverts the initial superposition step, shown for
the example in Supplementary Figure 3(b5). All of the above operations take place in the energy basis, and only the
seeding operations and their Hermitian conjugates need take place in the global basis. In the next step, the di�erential
nature of the algorithm is exploited to replace the traditional Grover call. The operation identi�ed as angle selection
in Figure 3 of the main text is a means to re�ect about an unknown di�erential state. This is done by relabeling the
di�erential signal qubits to reverse their polarity, �ipping the phase of the appropriate eigenvectors in each track,
followed by the restoration of signal polarity. This is shown diagrammatically with a reordering of the qubit lines so
that all operations stay exactly parallel in the tracks. This construction allows a re�ection of the wave-function about
the dynamic angle |θ〉 〈θ| (instead of a re�ection about the static |0〉 〈0| as in the Grover search algorithm), shown for
the example in Supplementary Figure 3(b6). Although in this example a controlled-controlled-Z operation ampli�es
the currently desired angle, in general the Grey code used in the quantum-walk on a Bloch sphere and the speci�c
desired angle determine the functionally correct sub-circuit to use. As with the traditional ampli�cation algorithm,
one repeats all the previous steps until they have fully ampli�ed the desired operation. In this case, since there are
only two oracle-identi�ed answers in each track from a possible eight eigenvectors, it takes only one set of re�ections
to completely shift all the amplitude of the wavefunction to cos (θ + α+ β) /2 |000〉+ sin (θ + α+ β) /2 |001〉 in the
top track and cos (θ + α+ β) /2 |000〉 − sin (θ + α+ β) /2 |001〉 in the bottom track. So one �nal �quantum walk�
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fully ampli�es the desired rotation angle, shown for the example in Supplementary Figure 3(b7). Note that any stray
phase-�ips created by fermionic loops in the quantum-walk operation get reversed in the reverse-quantum-walk and
so that the phases used to control re�ections in Amplitude Ampli�cation are preserved and physically correct for
fermionic qubits. Because all operations between the two tracks take place concurrently, the same operating �eld
may be used for each track simultaneously. This allows for a natural rejection of certain common mode noise in the
operational �elds applied in the local basis. For example if the initial state of the di�erential qubit is given by

|ψi〉 |−ψi〉 =

(
cos

(
θ

2

)
|1〉+ eiφ sin

(
θ

2

)
|0〉
)(

cos

(
θ

2

)
|1〉 − e−iφ sin

(
θ

2

)
|0〉
)
,

having arbitrary initial di�erential phase error, φ, common mode errors will accumulate di�erentially in the angle
selection and re�ection steps to make φ stochastic. However, if we compute the entropy of the ensuing density matrix,
there is still a full qubit of information. Cross coupling two di�erential tracks provides enough information about a
single qubit that it forms a decoherence-free subspace against a certain di�erential common mode error.

As with traditional amplitude-ampli�cation algorithm, the number of re�ections required grows linearly with the
number of control bits. However in the case of quantum Fourier transform, all seven controlled rotations needed
to reach the critical bound of π/128 may be done in one instantiation of the above algorithm with ten re�ections,
without the need for an oracle that is more complex. In general, one can create a repository of precise base angles in
an extended Hilbert space and use them for quantum operations by amplifying the desired angles.

Supplementary Notes B :

Simulating unitary error

We calculate the improvement in arbitrary quantum rotation using di�erential amplitude ampli�cation by ap-
plying simultaneous, unitary error to all qubit operations. We assume a quantum system where decoherence, phase
error, and static inhomogeneity are negligible. Instead, we assume the interactions between the qubits and the control
�elds defy the assumptions of quantum fault tolerance when parity checks between small rotations are applied, due
to a sizable standard deviation of the mean error. In other words, the interaction imprecision is too large and the
number of qubits too small to approximate their mean error as zero when seeking a Fidelity greater than 0.9999.
Because unitary error perpendicular to the interaction geodesic (phase-error) is shown to be negligible [16], only
unitary error parallel to the interaction geodesic (under-over rotation) need be considered.

We simulate the e�ect of under and over rotation of control pulses of intended Area, A, by an errant amount,
ε, by applying each operation, having generator, G, as exp [iG (A+ ε)]. Cli�ord operations equipped with quantum
fault tolerance can be applied using the improved operation, exp

[
iG
(
A+ ε2

)]
, instead. This is an upper-bounding

approximation as sin2 (ε) ≤ ε2. In Supplementary Figures 4(b,e,h), we plot the Fidelity for the circuit, when under and
over rotation error is applied to each type of operation and then �nally in simultaneous aggregate. These plots assume
an application of quantum fault-tolerance to the Cli�ord operations that compose the circuit and that the control
qubits were measured to be zero. The probability of this occurring is given by the adjacent plots in Supplementary
Figures 4(a,d,g).

For reference a plot of the circuit's Fidelity when the constituent operations are applied without quantum fault
tolerance is given in Supplementary Figure 5. The Supplementary Figures 5(a) and 5(b) show that the Fidelity of the
circuit without quantum fault tolerance is much lower than a direct rotation. In this case, the total Fidelity drops
to 0.9 even with minimal error applied to all operations as shown in 5(c).

Static shifts in the area of the control pulse produce deviations from the correct Bloch sphere after measurements
are made of the control qubits. Measurement is not necessary, but serves two purposes. First, all the control qubits
should be zero at the end of the operation, and if they are measured otherwise, it heralds an errant operation. Second,
measuring zeros collapses residual error and prevents it from propagating further. Upon adding signi�cant unitary
error, ε, we see that probability of successful measurement of the control qubits (measuring zero) is still very high
and should not deter scalability as shown in Figure 4(i). However, it is seen that simultaneous error impacts the
probability of correct measurement due to the A2 operation and impacts the Fidelity due to the swap operation, and
they so limit the total error. The precision of the rotation circuit drops precipitously at approximately ε = ±0.5 due
to the normal limits of traditional quantum fault tolerance upon Cli�ord operations.
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Coherent population trapping (CPT) refers to the steady-state
trapping of population in a coherent superposition of two
ground states that are coupled by coherent optical fields to
an intermediate state in a three-level atomic system1. Recently,
CPT has been observed in an ensemble of donor-bound spins
in GaAs (ref. 2) and in single nitrogen-vacancy centres in
diamond3 by using a fluorescence technique. Here, we report
the demonstration of CPT of an electron spin in a single
quantum dot. The observation demonstrates both the CPT of an
electron spin and the successful generation of Raman coherence
between the two spin ground states of the electron4–6. This
technique can be used to initialize, at about a gigahertz rate,
an electron spin state in an arbitrary superposition by varying
the ratio of the Rabi frequencies between the driving and probe
fields. The results show the potential importance of charged
quantum dots for a solid-state approach to the implementation
of electromagnetically induced transparency7,8, slow light9,
quantum information storage10 and quantum repeaters11,12.

A critical condition for realizing coherent population trapping
(CPT) is to have a pair of stable ground states with a relatively long
coherence time compared with the excited-state decay time. An
electron spin trapped inside a single quantum dot is a system that
meets this requirement and constitutes an excellent opportunity
for the realization of CPT. The demonstration of CPT shows
the existence of the dark state which is important for various
physical phenomena, for example, CPT is the central physics of
electromagnetically induced transparency8, and the fast change of
refractive index can lead to the effect of slow light9, assuming an
ensemble of identical charged quantum dots is available.

The electron spin inside a quantum dot has been proposed as
a qubit for quantum computing owing to its long coherence time
compared with fast optical operations13. An important step towards
optically driven quantum computation in the quantum dot system
is to generate electron spin coherence. The usual method of creating
electron spin coherence in quantum dots is to use pulsed lasers4–6.
Here, the demonstration of CPT by measurement of the absorption
spectrum is evidence of the creation of electron spin coherence at a
single quantum dot level by continuous-wave lasers.

Another critical element for quantum information science
is the initial quantum state preparation14. Electron spin state
initialization has recently been realized in a single quantum dot by
optical spin cooling techniques with a high fidelity15,16. However,
the limitation is that only two possible initial qubit states can
be prepared, either spin up or spin down. CPT is a process
that generates an arbitrary coherent superposition of electron
spin ground states, the probability amplitudes of which can be
controlled by varying the ratio of Rabi frequencies between the
driving and probe optical fields. Therefore, we can prepare an
arbitrary initial qubit state by using the CPT technique. In this
scheme, the initialization rate is limited by the excited-state decay
rate, which is of the order of 109 s−1 (ref. 15).

The sample under study contains self-assembled InAs quantum
dots embedded in a Schottky diode structure, which gives us the
ability to control the charging state of the quantum dot15,17 (see the
Supplementary Information). In the experiment, we set the voltage
such that only one electron is trapped inside the quantum dot. At
zero magnetic field, the energy level structure for the lowest-lying
states of the negatively charged quantum dot can be modelled as
shown in the upper left inset of Fig. 1. The electron spin ground
states (trion states) are labelled as |±(1/2)〉 (|±(3/2)〉), where
|±(1/2)〉 (|±(3/2)〉) denotes the electron (hole) spin states along
the growth axis15. The only dipole-allowed transition is from the
spin ground state |(1/2)〉 (|−(1/2)〉) to the trion state |(3/2)〉
(|−(3/2)〉) with σ+ (σ−) polarized light excitation. As the spin-flip
Raman transitions are dipole forbidden, the trion system at zero
magnetic field can be considered as a double two-level structure,
not possible for the realization of CPT.

To create a three-level lambda system, we apply a magnetic field
in the Voigt geometry (X axis), perpendicular to the sample growth
direction (Z axis). As the electron and hole in-plane g factors are
non-zero, which are 0.49 and 0.13 for this particular quantum dot,
the applied field mixes the spin ground states as well as the trion
states. The energy level diagram and the associated selection rules
of the trion system are shown in the upper right inset of Fig. 1.
The new electron spin eigenstates |X±〉 can be excited to either
of the trion states |T±〉 with linearly polarized light15. Hence, the
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Figure 1 The trion model and its characterization. Inset: Trion energy level
diagrams (upper left) without and (upper right) with magnetic field applied in the
Voigt geometry. V (H ) means the transition is vertically (horizontally) polarized. At
zero magnetic field, the spin-flip Raman transitions are dipole forbidden. By applying
a magnetic field in the Voigt geometry, the dark transitions become bright. A
three-level lambda system is formed by these levels enclosed in the dashed line.
The main figure shows the single-beam absorption spectrum of the trion state at a
magnetic field of 1.32 T with 45◦ linearly polarized light excitation. A quartet
transition pattern is observed as the gate voltage is set in the non-optical
pumping region.

forbidden Raman transitions at zero magnetic field are turned on
when the magnetic field is applied along the X axis. As shown
in the upper right inset of Fig. 1, we choose |X±〉 and |T−〉 to
form a three-level lambda system. As the transitions from one
trion state to the spin ground states are orthogonally polarized,
the spontaneously generated coherence that was observed in GaAs
interface-fluctuation quantum dots4 is absent here.

We first characterized the quantum dot with a single-beam
voltage-modulation absorption experiment15,18. We set the gate
voltage at the edge of the trion charge plateau, where the optical
pumping of the electron spin effect is suppressed15,16. Figure 1
shows the quartet transition pattern of the trion state using 45◦

linearly polarized light excitation at a magnetic field of 1.32 T. The
observation of the four transition lines confirms that all four trion
transitions are turned on and have similar transition strengths15.
The four transitions are labelled as V 1, H1, H2 and V 2.

We then set the gate voltage to where the co-tunnelling-
induced spin-flip process is suppressed19. Figure 2a shows a single-
beam absorption spectrum by scanning the laser across transition
H1 at a magnetic field of 2.64 T. We observed an almost flat
line for the probe absorption spectrum, reflecting the absence of
the absorption due to optical pumping15. The optical-pumping-
induced saturation of the absorption shows that the spin relaxation
rate is much slower than the trion relaxation rate. Hence, the spin
ground states can be considered as metastable states compared with
the short-lived trion states.

To understand the experimental conditions for the
measurements, we consider the interaction scheme shown in Fig. 3.
A strong optical field (the driving field) is tuned on resonance with
transition V 2 and a weak optical field (the probe) is scanned across
transition H1. When the probe laser is resonant with transition
H1, the two-photon Raman resonance condition is reached. As
seen in Fig. 2b, a clear dip in the probe absorption spectrum is
observed for Ωd/2π= 0.56 GHz. This observation demonstrates
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Figure 2 The experimental evidence of the CPT of an electron spin. The gate
voltage is set in the optical pumping region and the applied magnetic field is 2.64 T.
a, The probe absorption spectrum across transition H 1 in the absence of the driving
field. b–f, Probe absorption spectra with various driving-field Rabi frequencies. The
driving field is set to be resonant with the transition from |X−〉 to |T−〉. The red
solid lines are the theoretical fits by solving the optical Bloch equations. A
pronounced dip is observed in the probe absorption due to generation of the
dark state.

both the generation of the CPT of an electron spin and the Raman
coherence between the spin ground states. For this particular set
of data, the applied magnetic field is 2.64 T, corresponding to an
electron Zeeman splitting of 75.4 µeV (18.2 GHz).

The system is described by the optical Bloch equations for
the three-level lambda system shown in Fig. 3, where Γij (γij) is
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Figure 3 The interaction scheme of the generation of CPT. A three-level lambda
system formed by spin ground states |X±〉 of an electron and an intermediate trion
state |T−〉.

the trion population decay (dipole dephasing) rate, Γs (γs) is the
electron spin relaxation (decoherence) rate, Ωi = (µi ×Ei/h̄) is the
Rabi frequency, µi is the transition dipole moment and Ei is the
optical field strength. For simplicity, we assume Γs, γs �Γij , γij,Ωi.

The analytical result of the probe absorption spectrum is
generally complicated. However, a relatively simple form can be
obtained when the driving and probe beams are both on resonance.
After simplification, the absorption of the probe beam can be
written as

α = αo

(
γs −Γs +l2Γs

)
(1+l2)2

γT−X+

Ω 2
d

,

where l = (Ωp/Ωd) and αo is a constant. To understand the
physics of the dip, we can take l = 1, the absorption expression
is simplified to α = (αoγT−X+/4)(γs/Ω 2

d ). Therefore, the height
of the dip is linearly proportional to the spin decoherence rate. If
γs = 0 (γs �Ωd), the probe absorption vanishes (almost vanishes),
that is, the transition becomes transparent to the incident light
owing to the destructive interference of the coupled transitions
driven by the coherent optical fields.

The observation of CPT can also be understood from the point
of view of optical pumping. When the driving and probe lasers
are on the two-photon Raman resonance, a coherent dark state
is created that is decoupled from the applied optical fields and
can be represented as |D〉 = (�d|X+〉−�p|X−〉)/(

√
�2

d+�2
p).

Part of the population is excited from the electron spin ground
state to the trion state and relaxes spontaneously into the dark
state. As the dark state is not ‘seen’ by the optical fields, the
total population is eventually trapped there within a few radiative
cycles of the trion state. In CPT, the coherence between the spin
ground states is created by the coherent optical fields. Therefore,
the whole process is an optical pumping process, the rate of which
is ultimately limited by the excited-state decay rate, with the transfer
of the mutual coherence between the optical fields to the electron
spin coherence.

An arbitrary initial state for the quantum computation can
be prepared by varying the ratio of the Rabi frequencies between
the driving and probe fields. Ultimately, if we set Ωd to zero,
the initialized spin state will be |X−〉. This is the fast spin-state
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Figure 4 The analysis of the CPT effect. a, The energy separation of the
Autler–Townes doublets as a function of driving-field strength. b, Theoretical curves
of the creation of the electron spin coherence in a single charged quantum dot. Red
line: experimentally generated electron spin Raman coherence (ρX+X−) inferred from
the optical Bloch equations calculation by using the experimental parameters. The
calculation is done under the experimental condition that the driving and probe fields
are resonant with transition V 2 and H 1, respectively. Green line: the calculated
maximum electron spin Raman coherence in the absence of the electron spin
dephasing. Blue line: the ratio of the calculated coherence with and without electron
spin dephasing.

preparation effect as discussed in ref. 15. The difference is that when
Ωd is zero, there is no coherence involved in the state initialization,
and the preparation efficiency is determined by the electron spin
relaxation rate. In the initialization of the coherent superposition
state, we generate an electron spin coherence by the optical fields,
and the state preparation efficiency is limited by the electron spin
decoherence rate.

The linewidth of the dip in the probe absorption spectrum
is ultimately limited by the electron spin decoherence rate. In
the experiment, the smallest Ωd we applied is 0.56 GHz, which is
about half of the trion transition linewidth, but still much larger
than γs. Hence, the linewidth of the dip is broadened by the laser
power. When Ωd is strong, it will dress the spin ground state
|X−〉 and the trion state |T−〉. In the case where Ωd is larger
than the trion transition linewidth, the absorption spectrum of
the probe beam will split into two peaks when scanning across
transition H1, which are known as Autler–Townes doublets20, and
has been demonstrated in a neutral quantum dot21,22. The spectral
features of the probe absorption spectrum in our experiment are a
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combination of the Autler–Townes splitting and the CPT quantum
interference effect7, where the spectral positions of the side bands
can be determined by the Autler–Townes splitting and the central
feature in the absorption spectrum is due to the CPT effect, not
a simple summation of the tails of the Autler–Townes Lorentzian
line shapes.

The probe absorption spectra with various driving field and
fixed probe Rabi frequencies are shown in Fig. 2b–f. The energy
separation of the two peaks is increased by increasing the driving
field intensity. As Ωd becomes larger than the trion transition
linewidth, two Autler–Townes peaks with Lorentzian line shapes
appear in the probe absorption spectrum, as shown in Fig. 2e,f.
Figure 4a shows the energy separation of the Autler–Townes
splitting peaks as a function of the driving field strength. A linear
regression fits the data and extends to zero in the absence of the
driving field, which indicates that the splitting is dominated by Ωd.
The red solid lines on top of the data shown in Fig. 2b–f are the
theoretical fits obtained by solving the optical Bloch equations to all
orders in the driving field and to first order in the probe. Assuming
that γs is a few orders of magnitude larger than Γs (as we show
below), we find γT−X+/2π, and γs/2π equal to (0.54 ± 0.1) GHz
and (40±12) MHz, respectively. The value of 40 MHz corresponds
to the electron spin decoherence time T∗

2 (1/γs) of 4 ns. Although
we measure an electron spin trapped inside a single quantum
dot, the electron spin T∗

2 extracted from the data is not the
intrinsic electron spin decoherence time owing to the hyperfine
interaction between the electron spin and the neighbouring nuclei
ensemble23–27. The intrinsic T2 can be measured by spin echo28 or
mode locking of spin coherence techniques5.

The generation of the dark state is accompanied by the
excitation of the electron spin coherence, which corresponds to
the density matrix element ρX+X−. We inserted the parameters
extracted from the fits into the optical Bloch equations and
obtained values for the coherence between the spin ground states,
which are represented by the red line in Fig. 4b. The green line in
Fig. 4b represents the theoretical values for the coherence in the
absence of spin decoherence, given by ΩdΩp/(Ω 2

d +Ω 2
p ). The blue

line represents the ratio of the experimentally generated coherence
to the ideal case. The light blue dashed vertical lines indicate
the applied Ωd in the experiment. At the maximally applied Rabi
frequency 1.38 GHz, we infer that 94% of the optimal coherence is
generated in our system.

Our results open the way to the demonstration of numerous
quantum phenomena in spin-based semiconductor quantum dot
systems. A direct step is to demonstrate electron spin ground-state
Rabi splitting by introducing a third continuous-wave laser, which
is an analogy of electron spin Rabi oscillations in the time domain.
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We present an adiabatic approach to the design of entangling quantum operations with two electron spins
localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically excited localized
states. Slowly varying optical pulses minimize the pulse noise and the relaxation of the excited states. An
analytical “dressed-state” solution gives a clear physical picture of the entangling process and a numerical
solution is used to investigate the error dynamics. For two vertically stacked quantum dots we show that, for
a broad range of dot parameters, a two-spin state with concurrence C�0.85 can be obtained by four optical
pulses with durations �0.1–1 ns.
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Adiabatic passage uses the slow variation of a system’s
Hamiltonian to select a particular quantum path while avoid-
ing unintended dynamics. Controlled adiabatic evolution of
the ground state has been proposed as a model for quantum
computation.1 Stimulated Raman adiabatic passage �STI-
RAP� �Ref. 2� can be used to transfer populations or coher-
ences between quantum states through a “dark state” which
efficiently suppresses relaxation. Arbitrary single-qubit op-
erations can be produced, for example, by STIRAP in a tri-
pod system3 or adiabatically controlled Raman excitation in
a � system.4 In this work we study how adiabatic control can
be used in design of optically induced two-qubit quantum
operations.

In systems with a permanent interaction between qubits, it
is known that adiabatic passage through degenerate dressed
states can also be used to construct two-qubit entangling
gates.5 However, for scalable solid-state quantum computa-
tion, it is important to keep the qubits isolated from each
other except during gating. Electron spins in semiconductor
quantum dots �QDs� are promising candidates for just such
qubits.6 They have long coherence time,7 can be manipulated
by electric gates8 or optically,9,10 and the coupling between
the qubits can be induced externally.

Significant experimental and theoretical effort has been
invested in optical manipulation of electrons in single and
coupled semiconductor QDs. Schottky diode structures with
embedded self-assembled QDs have been designed to control
the number of electrons in the dots by adjusting the external
bias voltage.11 The particular optical transitions between the
charged and the excitonic states can be addressed in these
dots by frequency and polarization selection.12 Efficient spin-
initialization schemes have been demonstrated recently using
optical pumping in the Faraday13 �magnetic field parallel to
the optical axis� and the Voigt12 �magnetic field orthogonal to
the optical axis� configurations. The Faraday14 and the Kerr15

rotations from single spins confined in QDs have been ob-
served, which should allow spin-readout and single-spin ro-
tation operations. For two-qubit quantum operations the en-
ergy level structure and the interdot coupling in vertically
aligned QD pairs have been studied.16,17

Several designs of two-qubit gates have been recently

proposed utilizing, for example, tunneling between excited
states of QDs,18 Förster-type interaction19 long-range cou-
pling through a photon bus,20 and electrostatic coupling be-
tween the excited states.21,22 These schemes are yet to be
demonstrated experimentally however. The major difficulties
are as follows:

�i� The proposals utilize properties of the QDs or device
structures which do not exist yet. For instance, two-qubit
gates in Ref. 20 utilize QDs in cavities coupled to a common
waveguide. Although such a design could potentially allow
large spatial separation of the qubits, there are no reliable
device structures yet.

�ii� The interdot coupling via, for example, electron tun-
neling between the excited orbitals or a Förster-type interac-
tion requires precise alignment of the energy levels and can-
not be controlled experimentally at the present stage of
technology.

�iii� Demonstration of a two-qubit operation is compli-
cated because of the gate structure. Although mathematically
all the two-qubit entangling gates are equivalent, their physi-
cal realization, demonstration, and implementation into a
particular quantum algorithm require different amount of re-
sources. It is particularly important when the operational
noise is a main limiting factor. For instance, demonstration
of conditional phase operation additionally involves a num-
ber of single-qubit gates that themselves are very noisy and
require a substantial experimental effort.

In this study we present a general approach to the design
of two-qubit entangling operations with uncoupled electron
spins in semiconductor QDs utilizing the Coulomb interac-
tion of transient optically excited states localized in the dots.
We show that adiabatic pulses combined with the counterin-
tuitive pulse ordering of STIRAP allows the construction of
nonlocal two-spin unitary transformations, while efficiently
suppressing population transfer out of the qubit subspace.
Compared to other two-qubit gates with spins in semicon-
ductor QDs our proposal

�i� utilizes the conventional Schottky barrier device struc-
tures within which QDs are routinely grown;

�ii� is based on the Coulomb interaction between the ex-
cited electronic states in different dots, and therefore does
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not require precise control for the energy level structure; and
�iii� provides flexibility in the gate design. In addition to

the controlled-phase gates one can construct operations re-
sulting in a coherent oscillation of two-spin state population,
which is a more accessible signature of entanglement.

As illustration we describe an operation for two spins in
separate self-assembled InAs/GaAs QDs. While for clarity
the entangling process is described in the path language, it,
in fact, represents a quantum operation made up of a product
of �iSWAP and controlled-phase gates. Combined with
single-qubit rotations4 and optical initialization,12,23 we ob-
tain a set of gates for universal quantum computation. We
employ the Voigt configuration to obtain the flexibility re-
quired to select the desired quantum paths through polariza-
tion and frequency selection. The evolution of the system is
then guided through a particular subset of quantum paths by
a sequence of adiabatic pulses. In our dressed-state picture
the scheme can be viewed as an adiabatic passage of an
arbitrary initial two-spin state through two long-lived states.
The interference between the two paths results in an effective
rotation in the spin subspace. The method proposed here can
be adapted to construct controlled-phase and controlled-NOT
gates.

In two self-assembled InAs/GaAs QDs, the direct electron
or hole tunneling between the dots may be suppressed by
selecting the dot heights and the interdot distance.16,18 Then,
because the electrons and holes are confined differently, the
intrinsic Coulomb coupling between particles in different
dots modifies the optical transition energies.16,17 We employ
this phenomenon to perform two-qubit operations. This is
similar to the dipole blockade.24 However, we do not rely on
an external electric field. This substantially simplifies the ex-
perimental setup and makes the operation less sensitive to
external noise than the proposal of Ref. 21 in which in-plane
gates were used. The particular path used for the entangling
operation is shown in Fig. 1�a�. In the ideal case of strong
Coulomb interaction, starting with the polarized state �+,+�
one obtains the maximally entangled state 1

�2
��+,+�+ i�−,−��

after an effective � /2 two-spin rotation. A longer excitation
pulse results in coherent oscillations between �+,+� and
�−,−� populations—an experimentally observable signature
of the entanglement between the spins. Schematics of the
pulse sequence and of the evolution of the appropriate
dressed states are shown in Figs. 1�b� and 1�c�. The long
optical pulses used here may be generated by modulating cw
lasers, which would provide sufficiently narrow frequency
spectra of the pulses. Coherent optical coupling of the five-
state system shown in Fig. 1�a� does not yield a dark state
unlike in the familiar � system. However, the two states we
use are long lived under two-photon resonance,25 and we can
further reduce trion relaxation by detuning the optical pulses
and by adjusting their amplitudes.

For a single QD in the Voigt configuration with two
single-electron spin states,

� � � =
1
�2

�e↓
† � e↑

†��0� , �1�

we consider only two lowest-energy negative-trion states,

�t�� =
1
�2

e↓
†e↑

†�h↓
† � h↑

†��0� , �2�

where the operators e↑,↓
† and h↑,↓

† create, respectively, an elec-
tron and a heavy hole with spin along or against the growth
direction, which we also take as the optical axis. Because of
the large confinement splitting, the heavy hole is only weakly
mixed with the light hole, and this can be easily compensated
for by adjusting polarizations of the optical fields.4 With
these restrictions, the system of two dots has 16 states. The
four lowest-energy spin states form the qubit sector. They are
separated by a gap from eight single-trion states, which are
similarly distant from four bitrion states. The interdot Cou-
lomb interaction of electrons and holes gives rise to a bind-
ing energy of the bitrion,

� = E1221
eeee + E1221

hhhh − E1221
ehhe − E2112

ehhe , �3�

where Ejkkj
abba is a two-particle Coulomb integral, e or h de-

notes electron or hole, and j=1,2 labels the dots, and we
assume that the interdot electron-hole exchange is negligible
due to the large distance. In zero magnetic field, let the tran-
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FIG. 1. �Color online� �a� Optical scheme to control the en-
tanglement between spins in two InAs/GaAs QDs in the Voigt con-
figuration. Two-dot states are denoted by kets such as �t+ ,+�, with
�� � for the spin states and �t�� for the trion states. Arrows indicate
the linear polarizations Vj

� and Hj
� for the transitions �� �↔ �t��

and �� �↔ �t�� of dot j=1,2. �b� Timing of pulses for either dot.
V�t� and H�t� are envelope functions, for which we use the same
shape, rectangular with fronts shaped as sin4��t /Tf�, for all pulses,
and the same amplitudes for both V pulses and for both H pulses.
�c� Adiabatic time evolution of the dressed-state energies. Solid
lines show the essential energies which drive the operation.
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sition energy from the qubit sector to the single-trion sector
be �tj. The single-trion-to-bitrion transition energy is shifted
by the binding energy �, thus enabling the two types of
transition to be independently addressed. Four optical fields
can thus couple the states �+,−� and �−,+� or states �+,+� and
�−,−�. In the following we use the latter pair because an
efficient initialization of the state �+,+� is possible.12

First, we develop an analytical model describing the two-
qubit gate. It assumes strong Coulomb interaction between
the trions and does not account for relaxation from the ex-
cited states. These assumptions are relaxed later using nu-
merical simulations of the system’s dynamics.

The essential process of the quantum operation can be
described by a Hamiltonian

H =�
0 V1

��t� 0 0 0

V1�t� � H1
��t� 0 0

0 H1�t� 0 H2�t� 0

0 0 H2
��t� � V2�t�

0 0 0 V2
��t� 0

� �4�

acting on the five-level system 	Fig. 1�a�
 written in the ro-
tating wave approximation and an interaction picture. The
stationary basis states of the Hamiltonian are �+,+�, �t+ ,+�,
�t+ , t−�, �−, t−�, and �−,−�. The optical fields are detuned by
� from the single-trion transitions to avoid populating the
intermediate states, while the two-photon processes are reso-
nant with the bitrion transition. For the sake of simplicity we
use the same shape for both H pulses and both V pulses. We
therefore omit the indices of the pulse envelopes in Eq. �4� in
the following discussion. The two H-polarized pulses create
the interaction between two dots by optically coupling the
bitrion state to two single-trion states in the dots. Then, the
shorter V polarized pulses couple the qubit sector to the
renormalized excited states and rotate the spins in a way
similar to the single-qubit operation.4 The operation can be
described in terms of dressed states C1–5. In the adiabatic
approximation for positive � their energies are

E1 = 0,

E2,3 =
1

2
�� � ��2 + 4V�t�2� ,

E4,5 =
1

2
�� � ��2 + 4V�t�2 + 8H�t�2� , �5�

which are sketched in Fig. 1�c�. Adiabatic pulses do not ex-
cite transitions to the split-off levels E2,4, and thus states
C2 ,C4 may be ignored. The H pulse is applied first and lifts
the degeneracy of E1,3 and E5 levels, but state C5 remains
orthogonal to the spin subspace and thus the initial spin state
is not transferred to it. The transformation of a spin state is
controlled only by the evolution of the states C1 and C3,
which can be written as

C1 = −
1
�2

	cos 	,0,− sin 	,0,cos 	
 ,

C3 = −
1
�2

	cos 
1,− sin 
1,0,sin 
1,− cos 
1
 , �6�

in terms of time-varying angles defined by

tan 	 =
V�t�

�2H�t�
, tan 2
1 =

2V�t�
�

. �7�

When the optical fields are switched off, C1 and C3 reduce to
1
�2

	1,0 ,0 ,0 , �1
 which belong to the spin sector, C2,4 to
single-trion states, and C5 to �t+ , t−�. The evolution of the
spin states �+,+� and �−,−� is controlled by the unitary trans-
formation e−i�1�1−�x�, where �x= �+,+��−,−�+ �−,−��+,+� and

�1 =
1

2
� E3��d , �8�

where �=1 is assumed. An excitation with �1=� /4 would
create a maximally entangled state from either �+,+� or
�−,−�. The operation is designed to minimize the effects of
relaxation from excited states and pulse imperfections. The
states C1 and C3 overlap within the qubit sector only. There-
fore, the initial state always returns back to the qubit sector at
the end of the operation. If a part of the population is trans-
ferred to C5, for example, by applying optical pulses simul-
taneously, the bitrion state will be left populated. However,
this can be minimized by detuning of the two-photon excita-
tion processes from the bitrion transitions. Also the popula-
tions of the excited state components of C1 and C3 are con-
trolled by the small parameters �V /��2 and �V /H�2. Below
we show that it is possible to maintain the total population of
the excited states below 10% for pulse durations of the order
of 1 ns. This makes the lifetime of C1 and C3 about ten times
longer than that of bare trions. For an arbitrary initial state, in
addition to two-spin rotation described above, the �+,−� state
acquires a phase e−i�2, where

�2 =
1

2
� 	� − ��2 + 8V��2
d , �9�

driven by the V fields coupling to the single trions �t+ ,−�
and �+, t−�. The optically induced transformation of an arbi-
trary two-spin state in the approximation of a strong Cou-
lomb coupling and a large splitting between the Zeeman sub-
levels is

Uid =�
e−i�1 cos �1 0 0 ie−i�1 sin �1

0 e−i�2 0 0

0 0 1 0

ie−i�1 sin �1 0 0 e−i�1 cos �1

� , �10�

where the phases �1,2 are defined by Eqs. �8� and �9�, respec-
tively.

Detuning the optical fields is required to avoid unintended
dynamics such as population transfer from �+,−� to the
single-trion states �t+ ,−� or �+, t−�. As an aid to the design of
this process, we gather in Fig. 2 all the transition energies for
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both polarizations. The input parameters are the energy lev-
els from the dot fabrication, � from dot placement, the Zee-
man splittings, and the central frequencies of the optical
pulses parametrized by single detuning � for simplicity. Cor-
rection operation constrains these parameters as

��t � � � �i, �i � � , �11�

which is physically reasonable. If the bitrion binding energy
� and the Zeeman splittings �i and �i are comparable to the
detuning �, off-resonant processes have the undesired effect
that the pulse sequence which excites the desired quantum
path also excites an path involving the single trion states
�+, t−� and �t+ ,−�, albeit off resonantly. This reduces the
two-spin rotation angle. This secondary process can be in-
vestigated with a five-level model similar to that of the reso-
nant path. All other off-resonant excitations just give rise to
phases in second-order perturbation. Including these effects
	Eq. �10�
 can thus be generalized as

U =�
e−i�11 cos � 0 0 ie−i�14 sin �

0 e−i�22 0 0

0 0 e−i�33 0

ie−i�41 sin � 0 0 e−i�44 cos �
� ,

�12�

where the phases �ij and � are defined in the Appendix.
Equation �12� is not a standard quantum gate. Its usefulness

for quantum information processing has been discussed in
Ref. 18. In general, the gate can be factorized as a product of
control phase gates and a SWAP gate. Starting with an ini-
tially spin-polarized �+,+� or �−,−� state, one can generate a
maximally entangled state with �=� /4. Moreover, a longer
excitation pulse should result in coherent two-spin oscilla-
tions.

To examine the effects of trion relaxation and off-resonant
pumping, we numerically integrate the equation of motion
for the 16-level density matrix including all transitions of
Fig. 2. In particular, we consider two vertically stacked InAs
QDs. We model the trion relaxation with a Lindblad form23

and assume that all transitions are independent with the total
relaxation rate �=1.2 �eV.13 The recombination rate of
electrons and holes in different dots, as well as their spin
decoherence rate,7 is negligible on the operation time scale.
We take the interdot difference of the two single-trion ener-
gies to be ��t=10 meV, and the electron and hole g factors
to be ge=−0.48 and gh=−0.31 �Ref. 12� for both dots. There
appears to be no experimental data on the bitrion binding
energy in the literature. Gerardot et al.16 obtained 4.56 meV
for binding energy of two excitons located in dots with a
vertical separation of 4.5 nm. Scheibner et al.17 measured
−0.3 meV for the shift of a negative-trion transition when a
second dot is occupied by a hole with respect to a bare tran-
sition �interdot distance is 6 nm�. These give us two disparate
values for the biexciton binding energy. From a simple ana-
lytical model11 we estimate �=0.8 meV for dots with verti-
cal separation 8 nm. To characterize the entanglement of the
output qubit state we use the concurrence C.26

The most crucial parameter of the operation is the bitrion
binding energy �. Figure 3 shows the concurrence of the
output state as a function of � for several different excita-
tions. The laser fields are weak enough to avoid unintentional
dynamics outside the 16-level system �not studied here�. We
find that a state with a concurrence C�0.85 can be gener-
ated if ��0.3 meV for a broad range of excitation param-
eters. The lower boundary for � is determined by the sym-
metry of the excitation scheme. One can see in Fig. 2 that if
� is comparable to the Zeeman splitting the fields V2

− and H2
+

will excite transitions from the Coulomb-split doublets, in
addition to the intended transitions. This effect is avoided if
we design a gate to swap �+,−� and �−,+� states. In the
latter case the concurrence of the gate remains C�0.85 for
��0.1 meV and smoothly decays to zero at �10 �eV.

The time required to entangle two spins is on the order of
fractions of a nanosecond for the whole range of �. It
is much shorter than the free-qubit decoherence time
��1 �s� at low temperatures determined by the interaction
with a nuclear spin bath.7 The main factors limiting the pre-
cision of an operation in this case are excitation of unin-
tended transitions and relaxation from the optically excited
states utilized in the scheme. Our approach allows precise
control for unintended excitations. Within the 16-level
model, if we assume an infinite relaxation time for the
single-trion and bitrion states, the population of the excited
states, after the optical fields are turned off, is less than 10−5.
Variations in pulse shapes or field intensities do not affect
this value. In this sense our adiabatic excitation scheme is
more robust compared to fast resonant operations utilizing
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H
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FIG. 2. �Color online� Energies of allowed optical transitions
versus the optical frequencies �measured in energy units� for V po-
larization �upper figure� and H polarization �lower figure�. The thin
solid lines mark the transition energies in zero magnetic field. �tj is
the transition energy between a spin state and a trion state in dot j.
Their difference between the dots is shown as ��t=�t2−�t1.
� is the bitrion binding energy, thus making the transition energy
between the single and bitrion �tj−�. In a magnetic field, the
electron and hole Zeeman splittings � j

e and � j
h in dot j cause the

transition energy splitting 2� j=� j
e+� j

h in the V polarization and
2� j=� j

e−� j
h in the H polarization. The Zeeman split transitions

used in the quantum operation and off-resonant transitions are de-
noted by the thick solid lines and thick dashed lines, respectively.
The vertical arrows show the central frequencies of the optical
pulses and their detuning � from the corresponding transitions.
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pulse shaping. Although the effect of relaxation from the
excited states in our scheme is strongly suppressed by detun-
ing of optical fields, it is still noticeable and limits the con-
currence of a maximally entangled state. To further reduce
the relaxation effects one has to increase detunings of optical
fields and use QDs with greater separation between the en-
ergy levels �stronger Zeeman splitting and larger ��.

To characterize the precision of the designed operation we
define a fidelity of the gate18,27

F = ��0��U��†� fU���0� �13�

as it is described by our adiabatic analytical solution 	Eq.
�12�
 compared to numerical simulation of quantum dynam-
ics of the 16-level system that includes nonadiabaticity ef-
fects and relaxation. The bar over Eq. �13� is for average
over all initial states of two qubits and � f is a two-qubit
density matrix obtained in the numerical simulations. This is
the most objective method to analyze the theoretical model
short of having experimental data for comparison. The inset
of Fig. 3 show that the analytical model provides a good
description of the operation in the same range of �.

An example of an entangling two-qubit evolution is
given in Fig. 4 for two dots with the Coulomb coupling
�=0.3 meV. The optical pulses, centered at t=0, have been
optimized to obtain a final state with a maximal entangle-
ment from �+,+�. The output concurrence C0.87 is limited
by relaxation from the single-trion and bitrion states. How-
ever, because only a small part of population is transferred to
the excited states the entangling operation is weakly sensi-
tive to the trion relaxation rate, doubling it results in less

than 10% variation in the concurrence. Longer excitation
pulses result in Rabi oscillations of the pseudospin
	Fig. 4�b�
, which is consistent with the analytical model.
The decay time of the Rabi oscillations is on the order of 10
ns. The conventional three-dimensional �3D� tomography
plot 	Fig. 5
 shows the two-spin density matrix after the en-
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tangling gate is applied compared with the ideal one obtained
from Eq. �12�.

Measuring the entanglement of the output state in an ex-
periment requires a full-state tomography,28 which could be
rather difficult and a discussion of which is outside the scope
of this work. However partial indication is provided by the
oscillations between states �+,+� and �−,−� under longer ex-
citation 	Fig. 4�b�
. This effect can be probed by exciting
resonantly the population of a given spin state and then mea-
suring absorption or fluorescence. With two optical fields,
one can selectively excite a transition from a single two-spin
state to a bitrion state. For instance, optical fields V1

+ and H2
+

applied to the systems excite resonantly two-photon transi-
tion between �+,+� and �t+ , t−� states only 	see Fig. 1�a�
.
All other transitions are off resonant. Therefore, fluorescence
should be proportional to the population of �+,+�. To confirm
that the fields excite a two-photon transition one could mea-
sure two-photon cross correlations.16

In conclusion, we have developed an adiabatic approach
for the optically controlled entangling quantum operations
with two electron spins in semiconductor self-assembled
quantum dots. The scheme, utilizing the Coulomb interaction
between trions, is insensitive to material parameters, pulse
imperfections, and trion relaxation. We show that using four
optical fields a highly entangled two-spin state with the con-
currence C�0.85 can be prepared on the time scale of the
order of 1 ns.

This work was supported by ARO/NSA-LPS and DFG
under Grant No. BR 1528/5-1. We thank Dan Gammon,
Xiaodong Xu, and Yuli Lyanda-Geller for helpful discus-
sions.

APPENDIX

The phases in the transformation matrix 	Eq. �12�
 are
defined as follows:

� = �1 + �−,

�11 = �1 + �+ +� h1��d ,

�22 = �2 +� h2��d ,

�33 =� h3��d ,

�44 = �1 + �+ +� h4��d ,

�14 = �41 = �1 + �+ +� h+��d ,

where

�� = ��1 � �2�/2,

�1 = −� �� − �

2
−��� − ��2

4
+ H2�� + 2V2���d ,

�2 = −� �� − �

2
−��� − ��2

4
+ H2���d ,

and

h1�� = −
V2��

2� + �
−

H2��
� − � + 2�

,

h2�� =
V2��

2� − �
−

H2��
� − � − 2�

,

h3�� = −
H2��

� − � + 2�
−

H2��
� − � − 2�

,

h4�� = −
V2��

2� + �
+

V2��
2� − �

,

h��� = h1�� � h4�� .
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We investigate a singly charged quantum dot under a strong optical driving field by probing the system

with a weak optical field. We observe all critical features predicted by Mollow for a strongly driven two-

level atomic system in this solid state nanostructure, such as absorption, the ac-Stark effect, and optical

gain. Our results demonstrate that even at high optical field strengths the electron in a single quantum dot

with its dressed ground state and trion state behaves as a well-isolated two-level quantum system.

DOI: 10.1103/PhysRevLett.101.227401 PACS numbers: 78.67.Hc, 42.50.Gy, 42.50.Hz, 78.47.Fg

Quantum dot (QD) nanostructures have been proposed
for numerous quantum mechanical applications due to
their customizable atomlike features [1]. One important
application involves using these QDs as the building blocks
for quantum logic devices [2]. An electron spin trapped
inside a QD is a good candidate for a quantum bit (qubit)
since it is known to have long relaxation [3] and decoher-
ence times [4,5]. Recently, the electron spin coherence has
been optically generated and controlled [5–7] in ensembles
of QDs. The initialization of the electron spin state in a
single QD has also been realized by optical cooling tech-
niques [8,9].

One important task is to understand and control the
physical properties of a singly charged QD in the strong
optical field regime, i.e., the light-matter interaction
strength is much larger than the transition linewidth, under
both resonant and nonresonant excitation. For an ideal two-
level atomic system, it has been shown theoretically [10–
12] and demonstrated experimentally [13,14] that the
strong coupling leads to interesting spectral features,
such as Rabi side bands in the absorption, and strikingly,
the amplification of a probe beam, which is known as the
Mollow absorption spectrum (MAS).

Because of the unique atomic properties of the QD
system, many body effects which dominate the nonlinear
optical response in higher dimensional heterostructures are
strongly suppressed. Recently, the optical ac-Stark effect
has been seen by exciting a neutral QD with a detuned
strong optical pulse [15] while the MAS and Mollow
triplets [16] have been observed in a single neutral QD
[17,18] and a single molecule with intense resonant pump-
ing [19].

It is clear that a negatively charged quantum dot has
similarities to a negative ion. However, the excited state of
a dot is a many body system comprised of two electrons
and a hole. The Fano interference effect, which arises from
the coupling between a two-level system with a continuum
[20], has been observed in a negatively charged QD [9,21].

The recent study of a single charged QD in the strong
coupling regime does not exhibit the typical MAS [22].
All these indicate that interactions with a single charged
QD could be more complex due to many-body effects than
the electron-hole system reported earlier in neutral dots
[17,18]. Interestingly, the results in this Letter show that
strong field excitation tuned near resonance in a negatively
charged dot leads to changes in the absorption spectrum
that are in excellent agreement with theory for a strongly
driven two-level system.
In this Letter, we investigate a singly charged QD under

a strong optical driving field with both on- and off-resonant
pumping. When the strong pump is on resonance with the
trion transition, a triplet appears in the probe absorption
spectrum with a weak center peak and two Rabi side bands
with dispersive line shapes. As the pump beam is detuned
from the trion transition, we observe three spectral fea-
tures: a weak dispersive line shape centered at the driving
field frequency flanked by an ac-Stark shifted absorption
peak and a Raman gain side band. Our results reflect the
coherent nonlinear interaction between light and a single
quantum oscillator, and demonstrate that even at high
optical field strengths, the electron in a single quantum
dot with its ground state and trion state behaves as a well-
isolated two-level quantum system. It is a step forward
toward spin-based QD applications.
Assuming the trion can be considered as a simple two-

level system in the absence of the magnetic field, the only
optically allowed transitions are from the spin ground
states (j� 1

2i) to the trion states (j� 3
2i) with �� polarized

light excitations. Since the Zeeman sublevels of the elec-
tron spin ground state are degenerate, as are the trion states,
both trion transitions are degenerate. We then use the two-
level optical Bloch equations to model the trion system.
For simplicity, we labeled the electron spin ground state as
state jSi and the excited state as jTi, as shown in Fig. 1(a).
It is known that in a two-level system driven by a strong

optical field, the absorption of the weak probe beam is
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significantly modified [10–12]. The absorption coefficient
can be obtained by solving the optical Bloch equations to
all orders in the pump field and first order in the probe field,
as shown in Ref. [11,17]. When the strong pump is on
resonance with the trion transition, i.e., the pump detuning
�1 ¼ 0 and the Rabi frequency�R is much larger than the
transition linewidth 2�, the probe will show a complex
Mollow absorption spectrum, which has been discussed in
detailed in Ref. [17], where a neutral exciton has been
studied with a strong resonant pumping.

When the pump detuning is larger than the transition
linewidth, the physics can be understood in the fully quan-
tized dressed state picture. The uncoupled QD-field states
[Fig. 1(b)] map into the dressed states [Fig. 1(c)] when the
QD-field interaction is included. In Fig. 1, we assume the
pump detuning �1 to be negative, jSi and jTi are the
quantum dot states, and N is the photon number. Because
of the light-matter interaction, one set of the dressed states
can be written as [23]

jIðNÞi ¼ cjS; Ni � sjT;N � 1i;
jIIðNÞi ¼ sjS;Ni þ cjT;N � 1i

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 ð1� �1

�g
R

Þ
q

, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 ð1þ �1

�g
R

Þ
q

, and �g
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
R þ �2

1

q

is the generalized Rabi frequency. The energy

separation between the dressed states jIðNÞi and jIIðNÞi is
@�g

R. As shown in Fig. 1(c), there are three transition
frequencies: one centered at the pump frequency !1, and
two Rabi side bands centered at frequency !1 ��g

R.
Assuming �g

R � � and using the secular approxima-
tion, the steady state solutions for the dressed state popu-
lation are

�I;I ¼ c4

c4 þ s4
; �II;II ¼ s4

c4 þ s4
:

It is clear when �1 < 0, the dressed state jIðNÞi is more
populated than the dressed state jIIðNÞi. In Fig. 1(c), the
size of the dots on states jIðNÞi ðjIðN þ 1Þi and jIIðNÞi
ðjIIðN þ 1Þi indicates their population. Therefore, the
transition centered at !1 þ�g

R represents probe absorp-

tion [the rightmost dashed line in Fig. 1(c)], and the
transition centered at !1 ��g

R is probe gain due to the

population inversion of the dressed states [the leftmost
dashed line in Fig. 1(c)]. The gain process, in its simplest
form, can also be considered as a three photon process, in
which two pump photons are absorbed at frequency!1 and
a third photon is emitted at frequency !1 ��g

R [14]. The

middle dashed lines indicate transitions where the probe
frequency is close to the pump frequency and the secular
approximation fails. These can give rise to a dispersive line
shape [14,24].
The experiment is performed on a singly charged self-

assembled InAs QD embedded in a Schottky diode struc-
ture. The detailed sample information can be found in
Ref. [17,25]. The sample is located in a continuous helium
flow magneto cryostat at a temperature of 5 K. By varying
the dc gate voltage across the sample, the charge state of
the dot can be controlled [25,26] and the transition energies
can be electrically tuned using the dc Stark effect [27].
When the dc Stark shift is modulated by a small ac voltage,
the changes in the transmission signal can be detected at
the modulation frequency by a phase-sensitive lock-in
amplifier.
By setting the voltage modulation amplitude to about 16

times the transition linewidth, we avoid complexities asso-
ciated with smaller modulations [27]. The data taken di-
rectly correspond to the absorption. To obtain the Mollow
absorption spectrum, two continuous wave (cw) lasers are
used. In the pump-probe experiment, we set both beams to
be linearly polarized with orthogonal polarization. By
filtering out the pump beam with a polarizer in front of
the detector, we can measure the probe absorption only.
We first set the pump detuning �1 to be zero and scan the

probe frequency across the trion transition frequency !o.
Figure 2(a) shows the probe absorption line shape with a
pump intensity of 95 W=cm2. Instead of a Lorentzian
absorption line shape in the absence of the pump, as shown
at the bottom of the Fig. 2(a), the line shape of the probe
beam in the presence of a strong pump beam shows a
complex structure [28]: a tripletlike absorption pattern
appears with one weak central structure and two Rabi
side bands with dispersive line shape. The observation of
the Rabi side bands is a signature of the optical generation
of single dot trion Rabi oscillations. The inset in Fig. 2(a)
shows the Rabi splitting of the side bands as a function of
the pump intensity. The largest Rabi splitting we achieved
in the experiment is about 2� @�R ¼ 13:2 �eV, which
corresponds to switching between the ground and trion
states at a frequency of 1.6 GHz and is limited only by
the current experimental configuration.

Ω
Ι(Ν+1)

ΙΙ(Ν+1)

Ι(Ν)

ΙΙ(Ν)
δ

δ

Ω

FIG. 1 (color online). (a) The energy level diagram of a trion
state at zero magnetic field. The absorption spectrum of the weak
probe (thin arrow) is modified by a strong pump field (thick
arrow). (b) The uncoupled atom-field states. (c) Dressed state
picture of a two-level system driven by a strong optical field. The
energy levels outside the picture are not shown. The energy
splitting between the dressed states with the same photon num-
ber is @�g

R, where �g
R is the generalized Rabi frequency.
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The negative part of the absorption line shape demon-
strates gain of the probe beam. Since the pump is resonant
with the trion transition, there is no population inversion in
the steady state of the trion system in any picture. The gain
effect comes from the coherent energy exchange between
the pump and probe beams through the QD nonlinearity.
We define the efficiency of the probe gain as the ratio of the

amplitude of the negative absorption to the probe absorp-
tion in the absence of the strong pump. The probe gain
efficiency corresponding to a pump intensity of 95 W=cm2

is 5.3%. The earlier work by Kroner et. al. [22] did not
observe the typical spectral features for a isolated two-level
system, such as the dispersive side bands with optical gain
effect, and they attribute this difference to possible effects
of dephasing.
As we tune the pump laser frequency away from the

trion transition, the dispersionlike line shapes of the Rabi
side bands evolve into three spectral features: one weak
central structure with a dispersive line shape and two Rabi
side bands with Lorentzian line shapes. Figure 2(b) dis-
plays the probe absorption spectrum as a function of the
pump detuning with a fixed pump intensity of 95 W=cm2.
A distinct feature of the probe absorption spectrum is

that one of the side bands shows purely negative ‘‘absorp-
tion,’’ which is the gain effect. Using the pump detuning
@�1 ¼ �6:2 �eV as an example [the bottom curve of
Fig. 2(b)], there is an absorption peak located at !1 þ
�g

R. This is an ac-Stark shifted absorption peak. The side

band centered at !1 ��g
R is negative, which signifies the

amplification of the probe beam. In lowest order perturba-
tion theory, this reflects a three photon Raman gain effect:
the QD absorbs two pump photons at frequency !1 and
emits a photon at !1 ��g

R. The frequency at which gain

occurs can be tuned by adjusting the pump detuning. As
expected, if the pump detuning is positive, the probe sees
gain at !1 þ�g

R. The data with pump detuned @�1 ¼
1:24 �eV are shown at the top of Fig. 2(b). A gain peak
is clearly observed for the positive detuning of the probe. It
has been shown theoretically that the maximum gain oc-
curs at the absolute value of the pump detuning j�1j ¼
�g

R=3 provided �g
R � � [29]. For the pump detuning

@�1 ¼ �1:24 �eV, the data shows a probe gain of 9.7%,
which is much larger than under resonant pumping with the
same intensity. When the probe frequency is nearly degen-
erate with the pump beam, there is also a small dispersive
structure in the probe absorption spectrum, as shown in
Fig. 2(b).
The solid lines in Fig. 2(b) are theoretical fits of the data

to Eq. (1). The fits yield trion decay rate @�T and decoher-
ence rate @� of ð2:4� 0:4Þ �eV and ð1:45� 0:15Þ �eV,
respectively. We also performed power dependent one
beam absorption measurements. The extracted linewidth
is plotted in the inset of Fig. 2(b) as a function of laser
Rabi frequency, which clearly shows the power broaden-

ing effect. The fit with a equation of FWHM ¼
2@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2
R=ð��TÞ

q

yields respectively @�T and @� of

ð2:2� 0:1Þ �eV and ð1:35� 0:1Þ �eV, which agrees
well with the extracted parameters from the MAS. Since
�T is almost twice �, these fits show that our results can be
well reproduced by the optical Bloch equations and that
there is no significant pure dephasing in the QDs.

µ

µ Ω

µ

µ

µ

µ

µ

µ

µ

Ω (µ )

FIG. 2 (color online). The zero of the laser energy scale is
1318.797 meV. (a) Top curve: trion Mollow absorption spectrum
at a pump intensity of 95 W=cm2 with resonant pumping.
Bottom curve: a probe beam absorption spectrum with no
pump. Inset: the Rabi splitting of the side bands as a function
of the pump intensity. (b) Trion Mollow absorption spectrum
with various pump detuning with a fixed pump intensity of
95 W=cm2. Two Rabi side bands are clearly observed, where
one is the ac-Stark shifted absorption peak and the other shows
gain. Inset: the trion linewidth of the one beam absorption
spectrum as a function of laser Rabi frequency. It clearly shows
the power broadening effect. (c) The spectral position of the Rabi
side bands as a function of the pump detuning. We use the trion
transition energy as the zero point. The anticrossing feature of
the Rabi side bands is demonstrated as the pump is detuned from
the red to the blue of the trion transition. (d) The energy
separation of the Rabi side bands as a function of the pump
detuning. The solid line is the fit.
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Figure 2(c) shows the spectral positions of the Rabi side
bands as a function of the pump detuning. In the plot, we
use the trion transition frequency !o as the zero energy
point. Figure 2(c) clearly illustrates the anticrossing be-
havior of the Rabi side bands. The separation between the
two peaks at zero pump detuning represents the interaction
strength between the light and QD, equal to the Rabi
frequency. The dotted curves in the plot are the theoretical
predictions of the peak positions as a function of the
detuning, which is in good agreement with the measure-
ments. The laser light induced transition energy shifts at
the large pump detuning are a demonstration of the dy-
namic, or ac-Stark effect.

We extracted the energy separation of the side bands
from the data and plotted it as a function of the pump
detuning in Fig. 2(d). The solid line is a fit by the expres-

sion 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
R þ �2

1

q

and gives @�R ¼ ð6:2� 0:4 �eVÞ. Since
�R ¼ �Epump=@, we infer the trion dipole moment of

(25� 2) D. The trion dipole moment we calculated is
similar to the reported neutral exciton dipole moment [17].

The Einstein A coefficient, or spontaneous emission
rate, is [30]

�sp ¼ 9n5

ð2n2 þ n2QDÞ2
!3

o�
2

3�"o@c
3
¼ 9n5

ð2n2 þ n2QDÞ2
�spo (1)

where �spo is the spontaneous emission rate in the vacuum,

n and nQD are the refractive index of the medium and the

QD, respectively. By inserting the parameters into Eq. (1),
we obatin a spontaneous emission rate of @�sp ¼
0:54 �eV, which corresponds to a trion radiative life
time of 1.2 ns. Assuming there is no pure dephasing in
the QD, as we have shown earlier, then the trion transition
linewidth is about @�T ¼ 0:54 �eV, which is smaller than
what we extracted from our previous fits from MAS or
power broadening data. This discrepancy could come from
the spectral diffusion process, which broadens the trion
transition linewidth [17,31].

This work is supported by the U.S. ARO, AFOSR, ONR,
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field of the form M(y)P‘(y) can be obtained by
introducing a slowly varying modulation in, say,
the width or the properties of the material of
which an element is made. Similarly, in the case
of azimuthal symmetry, a Bessel beam can be
used together with a set of concentric rings of
properly modulated width placed at radii satis-
fying J1(q0r) = 0. The technology for manu-
facturing plates of this kind for microwave
applications has been available for quite some
time, whereas nanofabrication methods involv-
ing, for example, electron and focused ion beam
lithography, can be used for the infrared and
optical range. An important consideration in the
design of a near-field plate is to avoid as much
as possible the presence of terms giving a back-
ground that could overwhelm the sharp features
of the field. An example of background-free
focusing is shown in Fig. 2. These results are for
the diffraction of a plane wave by a set of rib-
bons of very narrow width << ‘ and parameters
such that the total current density is j = ( jx,0,0)
where

jxºdðzÞ∑
∞

s¼ −∞

ð−1Þsdðy − s‘Þ
ð1þ s2‘2=L2Þ ð7Þ

(the incident electric field is parallel to the
cylindrical axis). Such an array of currents, with
the sign varying from one element to the next,
can be realized at infrared and optical frequen-
cies by alternating material with positive and
negative permittivity and, in the microwave re-

gime, by using a set of interchanging capacitive
and inductive elements. Figure 2B shows a con-
tour plot of the y component of the diffracted
magnetic field (logarithmic scale). These results
are similar to those reported for negative-index
slabs (14, 25), thereby revealing the close rela-
tionship between the two phenomena (26).
Finally, to help ascertain the origin of radiation-
less interference, we show in Fig. 2C a linear
plot of the field intensity, normalized to its largest
value at a given z. Reflecting a property of the
zeros of Hy, the figure clearly shows behavior
reminiscent of beam coupling in that the dif-
fraction of the beam produced by a particular
current source is prevented by the presence of
its neighbors. It is only after the intensity of its
neighbors has decreased a sufficient amount that
the central beam is allowed to spread, and the
point at which this happens determines the focal
length.
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Coherent Optical Spectroscopy of a
Strongly Driven Quantum Dot
Xiaodong Xu,1 Bo Sun,1 Paul R. Berman,1 Duncan G. Steel,1* Allan S. Bracker,2
Dan Gammon,2 L. J. Sham3

Quantum dots are typically formed from large groupings of atoms and thus may be expected to
have appreciable many-body behavior under intense optical excitation. Nonetheless, they are
known to exhibit discrete energy levels due to quantum confinement effects. We show that, like
single-atom or single-molecule two- and three-level quantum systems, single semiconductor
quantum dots can also exhibit interference phenomena when driven simultaneously by two optical
fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the
optical fields drive coupled transitions and complex Mollow-related structure, including gain
without population inversion, when they drive the same transition. Our results open the way for
the demonstration of numerous quantum level–based applications, such as quantum dot lasers,
optical modulators, and quantum logic devices.

The quantum optoelectronic properties of
semiconductor quantum dots (QDs) have
featured prominently in numerous pro-

posals, including quantum computing, single-
photon sources, and quantum repeaters (1–3).
QDs are particularly attractive for these applica-
tions because they behave in many ways as
simple stationary atomic or molecular systems
(4) with discrete states where the electron-hole
pair can be treated as a well-defined composite-
particle state (5).

Whereas strong optical excitation of a semi-
conductor creates a many-body problem because

of the extended nature of the wave function (6),
confinement of thewave function inQDs leads to
strong energy-level shifts between one exciton
and two or more exciton states, enabling the
system to be considered as a relatively simple
few-level problem. The strong-field excitation
regime of the transition from the ground state to
an excited state such as the exciton, a Coulomb
bound electron-hole pair, is then defined by
WR >> 2g where the Rabi frequency WR ¼ mE

ℏ ,
g
p

is a transition linewidth (full width at half-
maximum, in Hz), m is the transition dipole
moment, and E is the amplitude of the optical
electric field. For time scales less than g−1, strong
excitation leads to Rabi oscillations (7–10) in
time. The effect of vacuumRabi splitting (11) has
also been observed in a single QD embedded in a
nanocavity (12–14).

Under strong continuous wave (CW) narrow-
band resonant optical excitation of a simple
atomic system, the fluorescence emission spec-
trum, which is a narrow emission line at low
power (the emission width is the laser band-
width), consists of three peaks referred to as the
Mollow triplet (15). A simple picture of the ori-
gin of this emission pattern is understood from a
dressed-atom picture (16). Figure 1B shows the
dressed-state picture with fully quantized atom-
field states, when the driving-field frequency w is
equal to the electronic frequency w0. In this limit,
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the “bare” states j3;N−1〉 and j2;N 〉 are degen-
erate, where N labels the photon number of the
driving field. The atom-field interaction lifts
this degeneracy and produces “dressed” states
jaðN−1Þ〉 and jbðN−1Þ〉 having energy separa-
tion ℏWR as shown. The dressed states are linear
combinations of the bare states. The dashed lines
in the figure indicate a triplet of possible emission
frequencies, occurring at w and w ± WR.

In absorption, the spectrum can be more
complex. For the three-level V system (Fig. 1A),
where the strong field couples levels 2 and 3,
theory predicts that the probe absorption from
level 2 to level 1 is strongly modified from the
usual simple Lorentzian seen in the absence of
strong-field excitation. The probe absorption
splits into two resonances, known as the Autler-
Townes (AT) splitting (17). When the probe
absorption on the strongly driven transition
(between levels 2 and 3) is measured, the spec-
trum is much richer. New physics beyond that
seen in the Mollow fluorescence triplet is ob-
served (18–22) and arises from the coherent
coupling between the two optical fields. When
the Rabi frequency of the strong pump field is
sufficiently large, the absorption spectrum shows
gain without population inversion.

We present experimental results of the AT
splitting and complex Mollow absorption spec-
trum (MAS) using a single semiconductor QD.
We coherently control the probe absorption with
a strong optical field, thus demonstrating that the
single QD coupled with the strong pump can
function as a modulator of the probe absorption
(23). In addition, the spectrum as a function of the
probe frequency shows Rabi splitting and gain
without population inversion. The results are in
good agreement with the standard theory based
on the optical Bloch equations. Our work dem-
onstrates that on long time scales, the discrete
energy-level spectrum of the dot is maintained
even at the high field strengths needed for quan-
tum logic operations (e.g., qubit rotations) and
single-photon devices, and that the system be-
haves in a manner similar to that of a trapped
atom. The results suggest that it should be pos-
sible to demonstrate numerous quantum level–
based applications, such as dressed-state lasers
(24), QD optical modulators (23), and quantum
logic devices (4).

The system of interest is a single, neutral InAs
self-assembled QD embedded in a Schottky
diode structure at 5K (25). The typical single-
beam, linear absorption spectrum of a single QD

(Fig. 1C), taken with a CW laser with a 300-KHz
linewidth, shows that the neutral exciton has two
linearly polarized quantum transitions with or-
thogonal polarizations. The fine-structure split-
ting of the exciton states, due to the QD in-plane
anisotropy (26), is about 15 meV. In the cor-
responding energy-level diagram of the states
(Fig. 1A), states |1〉 and |3〉 represent the exciton
states, state |2〉 is the crystal ground state, and the
two linearly polarized transitions are labeled V
and H.

To analytically describe our experiments, we
follow the approach used in (17, 19), describing
the system with the optical Bloch equations
iℏdr

dt
¼ ½H ; r� þ Decay (27, 28), where r and H

are the density matrix and Hamiltonian of the
light-coupled QD system, respectively. The
Hamiltonian is given by H ¼ H0 −

→m ⋅
→

E where
→

E ¼ →

E0 þ →

E1.
→

E0 is the strong pump field and
→

E1 is the weak probe field. For calculations of the
absorption spectrum, we can use the semi-
classical approach where the fields are taken to
be classical. H0 is the diagonalized Hamiltonian
for the QD structure (Fig. 1A). The results of
calculations in the limits appropriate to this work
are provided in the Supporting Online Material
(25). The theory is fit to experimental data with

Fig. 1. (A) The energy-level
diagram of a single neutral
QD. The absorption of the
weak probe beam by scan-
ning either transition V or H
is modified by the strong
pump beam, which is near
resonant with transition H.
(B) The dressed-state picture
of the system shown in (A).
The transitions between states
|a,N〉 (|b,N〉) and |1,N+1〉,
outside the energy range of the diagram, are not shown. If a weak beam
probes transition 2-1 as shown by the green arrows, the absorption spectrum
consists of a doublet. Ignoring the state |1〉, the emission spectrum of transition
3-2 consists of three peaks (Mollow triplet): a peak centered at the electronic

transition w, and two Rabi side bands located at w ±WR (shown by the dashed
lines). (C) Single-beam, linear absorption profile of a single exciton state. The
horizontally (or vertically) polarized light only excites the corresponding linearly
polarized exciton transition.
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Fig. 2. Autler-Townes
splitting by means of a
single QD. A strong pump
drives transition H, and a
weak probe scans across
transition V. (A) Probe ab-
sorption spectra as a func-
tion of the pump intensity
when the pump is on reso-
nance. I0 equals 1.2 W/cm

2.
The solid lines are theoret-
ical fits to the data. The
inset shows the AT splitting
(Rabi splitting) as a function
of the square root of the
pump intensity. A linear fit
(solid line) matches the data
very well. (B) The probe
absorption spectra as a
function of the pump frequency detuning with fixed pump intensity. The lines are the theoretical fits to the data.
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only the linewidth and amplitude as free
parameters. The dipole moment is extracted from
the linear dependence of the splitting on the field
strength.

To experimentally demonstrate the AT effect
(17), we use two frequency-locked but indepen-
dently tunable CW lasers with a mutual coher-
ence bandwidth of a few MHz (25). We set a
horizontally polarized pump beam resonant with
the H transition. A weak, vertically polarized
probe beam then scans across transition V. The
probe absorption spectra for different pump laser
intensities are plotted in Fig. 2A with increasing
pump intensity. The data are shifted vertically for
clarity. In agreement with theory (solid lines)
(25), the probe absorption splits into a doublet
where each peak has equal strength. There is a
small energy shift of the response relative to the
low-intensity excitation that is probably due to a
small screening of the applied field by photo-
excited charge in the diode. The shift saturates at
a power between the lowest-intensity curve and
the next higher-power spectrum. The pump laser
is adjusted to follow the shift of the resonance.

The frequency separation between the ab-
sorption peaks shows a strong dependence on the
pump intensity. We plot the measured splitting as
a function of the square root of the pump
intensity in the inset of Fig. 2A. The splitting
clearly depends linearly on the pump field
strength and goes to zero in the absence of the
pump, as expected for the dependence of the AT
splitting on the Rabi frequency.

Figure 2B shows the probe absorption as a
function of the pump detuning with a fixed pump
intensity of 30I0 (the corresponding photon
number per unit volume is ~1.4 × 1010/cm3),
where I0 = 1.2 W/cm2, corresponding to a Rabi
frequency of ~ WR

2p ¼ 1:1 GHz. Again, the data
are shifted for clarity, and the solid lines are the
fit of the data to the theory (25) and show good
agreement.

In the MAS, where the pump and probe
beams coherently couple to the same transition
and the pump field is tuned to resonance, we
observe a relatively weak maximum centered at
zero probe detuning and two Rabi side bands
with dispersive line shapes. The pump power
dependence of the probe absorption spectra is
shown in Fig. 3A. The single-beam absorption
data are plotted at the bottom. The spectral shift
of the data with the high-power optical field is
due to the excitation of the charge states in the
buffer layer. The complex line shape of the MAS
depends strongly on the pump intensity. The
splitting between the two side bands is plotted as
a function of the square root of the pump inten-
sity in Fig. 3B, again showing that the splitting
linearly depends on the pump field strength and
is zero in the absence of the pump field.

The data confirm that the probe beam
experiences optical gain in the pump-probe
configuration for strong excitation. The MAS
data in Fig. 3A show that part of the probe
absorption curve is below zero, which is the
“gain” effect. Using the data corresponding to

15I0 as an example, the absorption/gain ratio is
about 0.066%/0.0024% = 27.5. This gain is from
the pump and probe beams coherently exchang-
ing energy through the QD and corresponds to
gain without inversion because there is no pop-
ulation inversion either in the dressed- or bare-
atom pictures.

The AT splitting can provide a method to
measure the dipole moment, as the Rabi
frequency is a product of the transition dipole
moment with the optical field. From the ex-
tracted Rabi splitting with the corresponding
optical field strength, we can infer a transition
dipole moment of about 30 D for this particular
QD. The Einstein A coefficient (spontaneous
emission rate) of a QD in a medium is given

as gsp ¼ 9n5

ð2n2 þ n2QDÞ2
×

w 3
0 m

2

3pe0ℏc3
¼ 9n5

ð2n2þ n2QDÞ2
gspo,

where n (nQD) is the refractive index of the medi-
um (QD) and gspo is the spontaneous emission
rate of a two-level quantum system in the vacu-
um (29). By taking n = nQD = 3.44 and inserting
the experimental parameters and the extracted
dipole moment into the equation, we obtain
gsp
2p ¼ 190 MHz, which corresponds to a life time
of about 840 ps. Assuming there is no other
decay and no pure dephasing, this would lead to a
natural linewidth expected in the low-power ab-
sorption spectrum also equal to g3

2p ¼ 190 MHz,
where gj is the decay rate of level j in Fig. 1A.
Compared to the extracted linewidth from the
single-beam, low-power absorption data, which
is about 500 MHz, gsp is smaller by a factor of
about 2.5. This discrepancy indicates that there is
possibly a spectral wandering process that
broadens the transition linewidth (30). This
interpretation agrees with our previous study on
a single charged QD, which also suggested the
absence of pure dephasing.

We can also extract the exciton decay and
dephasing rates from the AT splitting and MAS
data. The solid lines in Fig. 2A are the theoretical
fit of the AT splitting data assuming that g3 =
g1 and G13 = 0, where gij = (gi + gj)/2 + Gij, gij is
the total dephasing rate, andGij is the contribution
to the dephasing rate of the ij transition from
sources other than spontaneous emission. From
the fits, we find g23

2p and
g3
2p of ð176 ± 16ÞMHz and

(357 ± 16) MHz, respectively. The theory fits the
data very well and indicates that under these
experimental conditions, the single QD behaves
like a single atomic system. We also fit the MAS
data to theory (25) (solid lines in Fig. 3A). The
fitting yields g23

2p and g3
2p of (230 ± 12) MHz and

(315 ± 45) MHz, respectively. The value of g23
2p

is within 10% of that extracted from the low-
pump field profile. The physical parameters from
the MAS and AT splitting data show that the
decay rate is almost twice the dephasing rate,
indicating no appreciable pure dephasing. We
speculate that the reason for the discrepancy
between the Einstein A coefficient determined
from the dipole moment (above) and the fitting
parameters is again due to spectral wandering,
which leads to a fit of the theory that over-
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estimates the population relaxation rate. How-
ever, this remains under investigation.

The ATsplitting and gain without inversion in
the Mollow absorption spectrum imply that the
absorption and gain inside a single QD are
tunable. In the AT configuration, the absorption
of the probe beam can be switched on and off by
applying a strong optical field. In contrast, in the
MAS experiment, the absorption of the frequen-
cy fixed probe beam can be tuned to be positive
or negative (gain) by adjusting the pump field
strength. Our results are the first step toward the
realization of electromagnetically induced trans-
parency and lasing without inversion in the spin-
based lambda system and suggest that QDs offer
the potential to be used as elements in opto-
electronics and quantum logic devices (4, 27).

Note added in proof: Since the submission
of this paper, two papers have appeared on
http://arxiv.org that report studies of the res-
onant excitation of quantum dots in the strong
excitation regime. The first (31) reports a mea-
surement of the fluorescence correlation func-
tion that Mollow first calculated, and the second
(32) reports Rabi oscillations.
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Deep Ultraviolet Light–Emitting
Hexagonal Boron Nitride Synthesized
at Atmospheric Pressure
Yoichi Kubota,* Kenji Watanabe, Osamu Tsuda, Takashi Taniguchi

Materials emitting light in the deep ultraviolet region around 200 nanometers are essential in a wide-
range of applications, such as information storage technology, environmental protection, and medical
treatment. Hexagonal boron nitride (hBN), which was recently found to be a promising deep ultraviolet
light emitter, has traditionally been synthesized under high pressure and at high temperature. We
successfully synthesized high-purity hBN crystals at atmospheric pressure by using a nickel-
molybdenum solvent. The obtained hBN crystals emitted intense 215-nanometer luminescence at room
temperature. This study demonstrates an easier way to grow high-quality hBN crystals, through their
liquid-phase deposition on a substrate at atmospheric pressure.

Hexagonal boron nitride (hBN) and cubic
boron nitride (cBN) are known as the
representative crystal structures of BN.

hBN is chemically and thermally stable and has
been widely used as an electrical insulator and
heat-resistant material for several decades; cBN,
which is a high-density phase, is almost as hard
as diamond (1).

Promising semiconductor characteristics
due to a direct band gap of 5.97 eV were
recently discovered in high-purity hBN crystals
obtained by a high-pressure flux method,

paving the way for a material that efficiently
emits deep ultraviolet (DUV) light (2, 3).
Similar to aluminum nitride (AlN) (4) and
gallium nitride (GaN) (5), hBN may have
attractive potential as a wide–band gapmaterial.
The layered structure of hBN makes the ma-
terial mechanically weak, but it has greater
chemical and thermal stability than GaN and
AlN. The interesting optical properties of hBN,
such as its huge exciton-binding energy (2), are
due to its anisotropic structure, whereas a single
crystal’s basal plane in hBN is not easily broken
because of its strong in-plane bonds. Thus far,
the excitation of hBN by an accelerated electron
beam or by far-UV light above the band-gap
energy shows various efficient luminescence
bands near the band edge.

However, the electronic properties of hBN
near the band gap, which is fundamental infor-
mation for developing DUV light–emission ap-
plications, are not yet fully understood, as seen
by the fact that the origins of the luminescence
bands are still controversial (2, 6, 7). Two op-
posed models, a Wannier exciton model and a
Frenkel exciton model, have been proposed. The
former model is based on results of the intrinsic
absorption spectra near the band edge from pure
single crystals (2), and the latter model is based
on theoretical calculations and a luminescence
study that used powder samples (7) showing very
intense impurity bands around 4.0 eV (8).
According to work examining the correlation
between impurities and defects and luminescence
properties (8, 9), the intrinsic optical properties of
samples are hindered by the extrinsic ones if
experimenters do not have careful control of the
samples’ crystallinity and polymorphic purity. In
(7), the strong 5.46-eV luminescence band, which
is attributed to stacking faults (9), dominated in
the region of the band gap, and the most intense
photoluminescence band at 215 nm, observed in
a pure single crystal, was not observed from the
powder sample. Pure samples with high crystal-
linity must be indispensable for developing this
newmaterial for DUV light–emitting applications.
Because high-quality hBN crystals have so far
been produced only by high-pressure processes,
it is important to discover an alternative synthesis
scheme for conventional crystal growth at atmo-
spheric pressure.

DUV-luminous single-crystalline hBN has
been created through the reduction of O and C
impurities with the use of a reactive solvent of
the Ba-BN system under high pressure (2, 3, 8).
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Selective Optical Control of Electron Spin Coherence in Singly Charged GaAs-Al0:3Ga0:7As
Quantum Dots
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Coherent transient excitation of the spin ground states in singly charged quantum dots creates optically
coupled and decoupled states of the electron spin. We demonstrate selective excitation from the spin
ground states to the trion state through phase sensitive control of the spin coherence via these three states,
leading to partial rotations of the spin vector. This progress lays the ground work for achieving complete
ultrafast spin rotations.

DOI: 10.1103/PhysRevLett.99.097402 PACS numbers: 78.67.Hc, 42.50.Hz, 42.50.Md, 71.35.Pq

The two spin states of an electron inside a semiconduc-
tor quantum dot (QD) can be mapped directly to the two
operational states in quantum information processing. The
lifetime of the spin states is on the order of milliseconds
[1–3], making the electron spin an ideal realization of a
quantum bit (qubit). Electron spin rotations have already
been demonstrated in surface gated dots using electrical
gates [4], but the operation time is limited to a few micro-
seconds by the microwave control resonant with the spin
states. Alternatively, ultrafast optical pulses are readily
available. Manipulating the spin states with these pulses
increases the gate operation speed and hence the number of
operations during the spin coherence lifetime. Fast opera-
tion rates are crucial for practical quantum information
processing.

In this Letter, we demonstrate phase sensitive partial
rotations of the electron spin vector in an ensemble of
singly charged QDs using picosecond pulses. Similar ro-
tations have been performed on electrons in quantum wells
[5,6]. The rotations are achieved through optically cou-
pling the spin ground states to the charged exciton (trion)
state. The accomplishment of the partial rotations prepares
the way for the demonstration of complete rotations of a
single spin, which would encompass arbitrary qubit
rotations.

The sample used in this study contains an ensemble of
interface fluctuation GaAs=Al0:3Ga0:7As QDs (IFQD) [7–
9] charged with single electrons through modulation sili-
con �-doping. The number of electrons in each dot is
determined by the doping density of the sample. In this
case, the doping density is 1010=cm2, which gives an
average of one electron per dot [10]. The sample is placed
inside a magnetic cryostat cooled to 5 K. The magnetic
field applied in the experiments is aligned in the Voigt
geometry, perpendicular to the sample growth axis, z.
The magnitude of the field is fixed at B � 6:6 T.

The population and coherence decay times in these QDs
range from 30 ps for the trion population to a T�2 of about

400 ps for the ensemble spin coherence at B � 6:6 T [11].
As a compromise between temporal and spectral resolu-
tion, 3 ps pulses are chosen for the experiments. Three
pulses are used to excite, control, and measure the QD
system, denoted as the pump pulse, the control pulse with
tunable delay (�c) and pulse area (�c), and the temporally
scanning probe pulse. The pump and probe pulses are each
modulated at 1 MHz and 1.05 MHz, respectively, while the
control pulse is unmodulated. The nonlinear optical signal
in differential transmission (DT) is homodyne-detected
along the probe path at the difference frequency of 50 kHz.

The energy structure of the singly charged QD at B �
0 T can be described by two degenerate two-level systems,
each consisting of one spin ground state and one trion
excited state, as shown in Fig. 1(a). The total angular
momentum projections along the z axis of the spin ground
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FIG. 1 (color online). Energy level diagrams of a charged QD
at (a) B � 0 T and (b) B � 0 T in the Voigt geometry. (c) Two-
beam (pump and probe) quantum oscillation signal of the
initialized spin polarization at B � 6:6 T.
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states jz�i are � 1
2 , defined by the electron spin, while

those of the singlet trion states jt�i are� 3
2 , defined by the

hole spin. The electron spins do not contribute to the total
angular momentum of the trion due to the antipairing. The
allowed optical transitions are then restricted to4m � �1
for �� polarized excitations. This angular momentum
restriction inhibits optical coupling between the two spin
states.

Indirect optical coupling between the spin states is en-
abled by applying a magnetic field in the Voigt geometry,
which produces two new eigenstates of the electron spin,
jx�i � �jz�i � jz�i�=

���
2
p

parallel or antiparallel to ~x, the
magnetic field direction [Fig. 1(b)]. The in-plane electron g
factor in this sample is 0.13 [9,12], and thus the Zeeman
splitting is approximately �� 50 �eV at 6.6 T.

In contrast, the highly suppressed mixing of the light and
heavy hole states at even 6.6 T by the strong spin orbital
coupling in this particular sample leads to a negligibly
small in-plane hole g factor [9]. This causes the hole spins
to be pinned along the z axis. Consequently, the trion states
remain unaffected by the magnetic field. The spin ground
states are now optically coupled through the trion states by
either �� or �� polarized optical pulses. Since the two �
systems are essentially equivalent, without loss of general-
ity, we concentrate on the �� polarized � system high-
lighted in Fig. 1(b).

In the presence of the �� pulses, stimulated Raman
transitions are driven through the trion state jt�i. The
�� pulses have a bandwidth of �� 400 �eV	 �,
which couple both spin states, jx�i, to jt�i simultaneously
and equally. The equations of motion in the field interac-
tion representation are then

 

_C jx�i � �i� � Cjt�i; _Cjx�i � �i� � Cjt�i;

_Cjt�i � �i��Cjx�i � Cjx�i�;
(1)

where the C’s are the probability amplitudes of the differ-
ent states and � is the optical field. Two optically coupled
and decoupled states, jz�i � �jx�i � jx�i�=

���
2
p

, are
formed for the �� polarization chosen. The jz�i state
has no � dependence, indicating that it is completely
decoupled from the optical field. Conversely, jz�i is fully
coupled to the�� optical excitation. Spin initialization and
polarization control are achieved utilizing this state pair.
Decay terms are not included in the equations as long as the
pulse duration is short compared to the trion and spin decay
times. For evolution of the system after the pulses, trion
decay is important, as discussed later.

At a temperature of 5 K, the thermal excitation energy is
430 �eV, which is an order of magnitude larger than the
electron Zeeman splitting energy, �. This results in a
completely mixed state of the electron spin, which also
means equal population in both spin ground states and zero
spin coherence in any basis. This completely mixed spin
subspace is inoperable using only unitary transformations
within this two-level system.

The initialization of the spin out of the completely
mixed state is accomplished with a single pump pulse. A
probe pulse reads out the result. The pump pulse transfers
population from state jz�i to the trion jt�i state, leaving a
net population difference of magnitude � in the optically
decoupled state jz�i. This population difference in the
spin subspace signifies a net spin polarization in the �~z
direction. The net spin polarization precesses at the Larmor
frequency, !L �

�
@

, around the magnetic field in the z-y
plane, corresponding to population cycling through the
jz�i states. The beat signal in Fig. 1(c) traces the projected
magnitude of the spin polarization along ~z, the optical
readout axis. The peaks and troughs of the beats represent
net spin polarization pointing along the �~z (spin popula-
tion in the jz�i state) and ~z (spin population in the jz�i
state) directions, respectively.

The density matrix �z in the z basis after initialization
and trion decay can be written as a sum of the coherent and
incoherent components in the absence of spin relaxation.

 �z � �inc � �coh

�
1��

2 0

0 1��
2

" #
� �

cos2 !L�
2

i
2 sin!L�

�i
2 sin!L� sin2 !L�

2

" #
(2)

where the delay time � is measured from a peak of the
Larmor oscillations. The incoherent part of the density
matrix �inc describes the equal distribution of the unin-
itialized spin population 1� � between the jz�i states.
The coherent part �coh describes the time evolution of the
initialized spin population �. The initialized spin polariza-
tion with unit @=2 in Cartesian coordinates is then given by

 

~S coh � ��0;� sin!L�; cos!L�� (3)

representing the precession of the spin vector around the
x axis on the z-y plane.

We note here that at 6.6 T, the contribution from sponta-
neously generated coherence (SGC) [11] is negligible in
the initialization process. The maximum initialized popu-
lation is 0.5 via a 	 pulse excitation to the trion. A more
detailed discussion of the initialization process has been
reported theoretically [13] and experimentally [12] using
multiple pump pulses. The ensemble spin coherence time
of about 400 ps at 6.6 T is limited by the inhomogeneous
broadening of the electron g factor and the spectral diffu-
sion process.

The initialized spin polarization described by �coh can
now be controlled through an optical pulse. Arbitrary
rotations of the spin are achieved through selective excita-
tions at different positions on the z-y plane during the
precession of the net spin polarization. By controlling
this excitation, we can control both the relative population
and phase between the jz�i components in the pure state.
If the optical field performs a coherent Rabi rotation on
jz�i via the trion and back with a net phase change, 
, a
general spin state, j i, will have the phase change in its
jz�i component without affecting its jz�i component, i.e.,
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its spin vector rotates about the z axis. The general spin
state for the initialized and properly controlled spin polar-
ization has the form

 j i �
���
�

p �
ei
 cos

!L�
2
jz�i � i sin

!L�
2
jz�i

�
(4)

where 
 is the net phase between states jz�i induced by
the control pulse. For !L� �

	
2 and 
 � 
 	

2 , the spin
state j i is proportional to jx�i along the x axis. Similarly,
a zero or 	 value of 
 puts the spin state in jy�i along the
y axis. If the optical Rabi rotation is 	, bringing state jz�i
to the trion state, followed by the trion decaying equally to
the jx�i states thus annihilating a portion of the spin
coherence, then the net result is a rotation together with a
reduction of the magnitude of the spin vector. This is a
partial rotation.

We first consider using a pulse area �c � 	 control pulse
delayed at different �c from the pump pulse to rotate the
initialized spin polarization at different times during the
Larmor precession. When the control pulse arrives at �c �
��z �

	
!L

, the entire initialized spin population � is in state
jz�i as shown in Fig. 2(a). The 	 pulse excites all of �
from jz�i to the trion state jt�i. After the decay of jt�i,
the system returns to the completely mixed state, as the
excited population � redistributes equally and incoherently
between the two spin ground states. As a result, the quan-
tum beats are annihilated and the simulated signal exhibits

a flat line following the control pulse at �c � ��z as shown
in Fig. 2(d).

By moving the control pulse to �c � �0 �
3	

2!L
, where

the optical signal or the z component of the spin polariza-
tion is zero as shown in Fig. 2(b), the spin polarization is
along � ~y, and states jz�i have equal populations. The
oscillation amplitude is decreased by half after the control
pulse as expected in Fig. 2(e) because half of � is being
‘‘protected’’ in state jz�i and is not destroyed by the decay
and redistribution process.

Finally, when the spin polarization is along �~z at �c �
��z �

2	
!L

, all of � is preserved in the optically decoupled
state jz�i as illustrated in Fig. 2(c). The quantum beats are
unaffected by the control pulse and continue to oscillate
uninterrupted as pictured in Fig. 2(f).

Overall then, as this delay �c of the control optical pulse
is scanned, the beat amplitude, which is also the magnitude
of the spin polarization j ~S��c�j from Eq. (3) after the
control pulse, follows an oscillatory behavior

 j ~Scoh��c�j �
�
2
�1� cos!L�c�: (5)

This discussion has treated the optical excitations and
precession dynamics in the magnetic field separately. The
assumption is valid since the temporal pulse width (3 ps) is
much shorter than the oscillation period of the quantum
beats (85 ps). Therefore, we can approximate the excitation
to the trion state as instantaneous so that precession around
the magnetic field during the optical pulse duration is
negligible.

Experimentally, we need to consider the effect of the
control on the uninitialized population in addition to the
initialized population. In the two-frequency modulation
spectroscopy used in the experiments, the DT signal de-
tected at the difference modulation frequency is equivalent
to the signal taken with the pump pulse on minus pump
pulse off. When the pump beam is off, the �c � 	 control
pulse produces quantum beats with an amplitude of
j ~Soffj �

1
2 from the completely mixed spin states, regard-

less of the control delay �c. However, when the pump pulse
is turned on, the position of the control delay �c becomes
significant. The beat amplitude after both the pump and
control pulses consists of two terms, where the first is a �c
dependent controlled term, j ~Scoh��c�j, due to both the pump
and control pulses as described in Eq. (5), and the second
term is a noncontrolled term, j ~Sincj �

1��
2 , due to the

redistributed uninitialized spin population. The final am-
plitude of the normalized quantum beat signal detected
after the control pulse, determined by the function Ion-off

for pump pulse on minus off, is the sum of the controlled
(j ~Scoh��c�j) and noncontrolled terms (j ~Sincj) minus j ~Soffj,

 Ion-off��c� �
�
2

cos!L�c: (6)
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FIG. 2 (color online). Evolution of the spin polarization vector
at control pulse delays of (a) �c � ��z, (b) �c � �0, and
(c) �c � ��z. The upper (lower ) sphere is the trion-spin (spin)
subspace. The zig-zagged lines represent the �� polarized
optical control field. The solid arrows indicate the magnetic field
directions, and the dotted curves are the paths of the precession
of the spin polarization vector prior to the arrival of the control
pulse. The solid bars represent the spin polarization alignment.
(d), (e), and (f) are simulated quantum oscillation signals before
and after the control pulse at the different �c indicated in (a), (b),
and (c), respectively.
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Data of the three-beam control experiment are shown in
Fig. 3(a). The cos!L�c dependence observed in the signal
beat amplitudes after �c (solid line) in Fig. 3(a) is in
contrast with the 1� cos!L�c dependence of the physical
pictures in Figs. 2(d)–2(f) as anticipated in Eq. (6). For
example, at �c � ��z, Fig. 2(d) shows vanishing quantum
beats after �c, while the quantum beat signal corresponding
to �c � ��z in Fig. 3(a) persists due to the nonzero Ion-off .
Numerical simulations in Fig. 3(b) take into account the
experimental parameters, such as the pulse width, beam
modulations, and decoherence times of the system. The
theoretical results are in excellent agreement with the
experiment.

We note that unlike the work in Ref. [12], where the
observed signal is a result of the quantum interference
between two independently initialized spin coherences
induced by the pump and control pulses, the behavior
described here is due to the subsequent rotation by the
control pulse of the actual pump-induced spin coherence.
In terms of optical pulses as transformation matrices for the
state vector of the quantum system, the former is a sum of
two matrices while the latter is a product.

To completely control the rotations of the electron spin
in the spin subspace without populating the trion, we need
to use a �c � 2	 pulse to control the relative phase 

between states jz�i in addition to the populations. This
phase control performs a complete Rabi rotation of state
jz�i. As a result, the population in jz�i is unaffected by
the 2	 pulse, but the state gains an overall phase depending
on the detuning of the pulse from the trion state [14]. For
example, the overall phase gained for an on resonance 2	
control pulse is
 � 	. At �c � �0, the spin state is rotated
from jy�i to jy�i, representing a spin flip. Similarly, 
 �
	
2 rotates the spin state from jy�i to jx�i. The magneti-
cally induced Larmor precession about ~x and optically
induced rotation about ~z are sufficient for creating any

arbitrary spin state. For an all-optical ultrafast spin rotation
scheme, optically induced rotation around ~x [15] can re-
place the Larmor precession.

Our data shows a partial rotation. The reason for the
limitation in IFQDs, namely, the difficulty in completing a
trion Rabi rotation, is not fully understood, especially in
light of the fact that Rabi oscillations in neutral IFQDs
have been observed [16]. However, the demonstration of
Rabi oscillations of trions in self-assembled QDs [3] shows
that the result in this experiment should be readily appli-
cable in those structures.
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FIG. 3 (color online). (a) Experimental result of the three-
beam (initialization, control, and probe) quantum oscillation
signal at different control delays �c. The solid line indicates
the position of the control pulse. (b) Theoretical simulations of
the same experimental set up in (a).

PRL 99, 097402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
31 AUGUST 2007

097402-4



Fast Spin State Initialization in a Singly Charged InAs-GaAs Quantum Dot by Optical Cooling

Xiaodong Xu,1 Yanwen Wu,1 Bo Sun,1 Qiong Huang,1 Jun Cheng,1 D. G. Steel,1,* A. S. Bracker,2 D. Gammon,2

C. Emary,3 and L. J. Sham3

1The H. M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA
2The Naval Research Laboratory, Washington D.C. 20375, USA

3Department of Physics, The University of California-San Diego, La Jolla, California 92093, USA
(Received 1 February 2007; published 28 August 2007)

Quantum computation requires a continuous supply of rapidly initialized qubits for quantum error
correction. Here, we demonstrate fast spin state initialization with near unity efficiency in a singly charged
quantum dot by optically cooling an electron spin. The electron spin is successfully cooled from 5 to
0.06 K at a magnetic field of 0.88 T applied in Voigt geometry. The spin cooling rate is of order 109 s�1,
which is set by the spontaneous decay rate of the excited state.

DOI: 10.1103/PhysRevLett.99.097401 PACS numbers: 78.67.Hc, 33.80.Ps, 42.50.Hz

The use of electron spins in semiconductor quantum dots
(QDs) as quantum bits (qubits) is being widely explored for
quantum information and quantum computation (QIQC)
[1–6]. A key element for QIQC is the initial quantum state
preparation. QIQC requires not only qubits initialized in a
known state for computation and gate operations, but also a
continuous supply of low-entropy ancillary qubits for
quantum error correction (QEC) [7,8]. A fault-tolerant
quantum computation requires about 104 quantum opera-
tions before the qubits lose their coherence [7,8]. This
requirement demands that the state initialization speed
must be much faster than the quantum state decoherence
rate.

The spin relaxation time (T1) of an electron spin trapped
in a self-assembled In(Ga)As QD has been measured to be
on the order of 20 ms [3], which sets an upper limit for the
spin decoherence time in the absence of other interactions
(e.g., phonon scattering, hyperfine interaction). The initi-
alization of an electron spin state has been demonstrated
recently in a singly charged QD by applying magnetic
fields in the Faraday geometry [2]. Although near unity
fidelity is successfully achieved, the initialization rate is
about 3� 105 s�1 [9], making it challenging for this
scheme to satisfy the QEC requirement. A fast state initi-
alization method with a high efficiency is essential for
practical QEC processes.

In this Letter, we demonstrate fast spin state initializa-
tion (optical pumping or laser cooling of an electron spin
[2]) in a singly charged InAs=GaAs self-assembled QD
(SAQD) in the presence of a magnetic field in the Voigt
geometry. The fast spin cooling with near unity efficiency
is achieved at the spin cooling rate of about 109 s�1 via the
resonant excitation of a trion state. The spin state is cooled
from 5 to 0.06 K at a magnetic field of 0.88 T at a rate
considerably faster than the spin decoherence rate.

The sample under study contains InAs SAQDs em-
bedded in a Schottky diode structure. An aluminum mask
with 1 �m apertures on the surface provides the spatial
resolution to study a single QD. The number of electrons in

a QD can be controlled by varying the bias voltages across
the sample. The experiment is performed at 5 K. Fig-
ure 1(a) displays a bias dependent photoluminescence
(PL) intensity map of a single QD showing the charging
effects. The state of interest is a single negatively charged
exciton (X�), which is called a trion and about 5.5 meV
lower in energy than the neutral exciton state. Details
regarding the physics of the bias dependent PL and
discussion of the transition assignments are found in
Ref [10–12].

The projection of the hole angular momentum on the
sample growth direction determines the angular momen-
tum of the trion state to be j � 3

2i. At zero magnetic field,
the electron spin ground states j � 1

2i are twofold degener-
ate. The only dipole allowed transitions are from the spin
states j � 1

2i to the trion states j � 3
2i with �� and ��

excitations, respectively. Figure 1(b) shows the spin flip

σ+ σ _

FIG. 1 (color online). (a) Bias dependent PL intensity map of a
single InAs SAQD, where Xn� denotes the charged exciton with
n excess electrons (� ) or holes (� ). (b) Trion energy level
diagram at zero magnetic field. (c) Polarization dependent VM
spectra of a singly charged QD at zero magnetic field. L, R, V,
and H denote left circular, right circular, vertical, and horizontal
polarization, respectively. Curves are the fittings of the data.
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Raman scattering transitions are ideally dark [13]. The
imperfect selection rules will lead to finite spontaneous
emission rates for the dark transitions [2], which ultimately
limit the spin cooling speed under these conditions [14].

Figure 1(c) shows a polarization dependent study on a
trion by voltage modulation (VM) spectroscopy [15] with a
modulation amplitude about a quarter of the trion line-
width. No fine structure splitting was observed [16].
Analysis of the line shape shows an asymmetry that could
arise from some kind of interference. Independent experi-
ments [17] have suggested it arises from a coupling of the
hole to the cap layer when the thickness of the cap layer
exceeds a critical value. The effect, still under investiga-
tion, complicates the exact determination of the linewidth,
but does not interfere with the qualitative features de-
scribed below. Fitting yields a trion linewidth of 1.5 GHz.

In order to implement a fast spin state initialization, the
dark transitions have to become bright, since the optical
pumping rate depends on the spin flip Raman scattering
process. This can be realized by applying a magnetic field
perpendicular to the sample growth direction [001].
Figure 2(a) shows the VM absorption map [18,19] as a
function of the applied bias at a magnetic field of 0.88 T
along the [110] axis. The laser field is linearly polarized
and 45� to the polarization axis ( ~�) of the quantum dot. In
bias region II, the optical pumping rate is larger than the
spin relaxation rate. Fast spin cooling is demonstrated,
where the absorption of the laser beam is strongly sup-
pressed by optical pumping. In region I, cotunneling (the
tunneling of the electron between the quantum dot and the
Fermi sea [2,20]) induced spin relaxation rate is compa-
rable or larger than the optical pumping rate, so the deple-
tion of the spin ground states is not achieved. Thus, the
strong suppression of the absorption disappears in region I
and a quartet transition pattern appears. The physics of the
two bias regions is discussed below along with the bias
dependent g factor associated with transition H1 and H2.

We first start with the bias region I of Fig. 2(a). As a
magnetic field is applied along the [110] axis, it induces off
diagonal terms in the Hamiltonian that couple both elec-
tron and hole states. The coupling leads to linearly polar-
ized transitions from the spin ground states to the trion
states. Figure 2(b) shows the corresponding four level trion
model, where jx�i (jt�i) are the spin (trion) eigenstates in
the magnetic field. The Zeeman splitting of the electron
spin (trion) states is jge?�BBxj (jgh?�BBxj), where ge?
(gh?) is the electron (hole) spin in-plane g factor, �B is
Bohr magneton, and Bx is the applied magnetic field. The
four linearly polarized transitions are labeled as V1, H1,

H2, and V2, where V1
!
kV2
!
? ~� and H1

!
kH2
!
k ~�.

Our measurements confirm that the dark transitions
become bright and all four transitions are linearly polar-
ized. However, the polarization axis ( ~�) of the QD is not
parallel or perpendicular to the applied magnetic field
direction, rather it is 45� to ~B in the X-Y plane for this

particular QD ( ~� may vary from dot to dot). This observa-
tion indicates the existence of heavy and light hole mixing
in our QDs caused by the QD in-plane anisotropy. The
mixing effects observed here agree with the previous re-
ports on the CdSe=ZnSe SAQDs [21]. The hole mixing
only affects the intermediate trion states, but not the spin
ground states. The only change introduced by the mixing
effect is that ~� rotates away from ~B, which is not essential
to our optical pumping scheme. For simplicity, the light
polarized along (perpendicular to) ~� is referred to as
horizontally (vertically) polarized.

Figure 2(c) shows the polarization study of the trion
state at gate voltage 0.19 V. A quartet transition pattern is
excited with a 45� linearly polarized light. When the light
is vertically (horizontally) polarized, the optical field only
excites the outer (inner) two transitions of the quartet.

FIG. 2 (color online). (a) Bias dependent VM absorption map
of a singly charged SAQD at a magnetic field of 0.88 T. The laser
is 45� polarized. Voltage region I shows all four trion transitions.
Spin state preparation is achieved in Voltage range II. (b) Energy
level diagram of a trion. The gate voltage is set at 0.19 V for plots
(c), (d), and (e). (c) Polarization dependent VM spectra of a
singly charged QD at magnetic fields 0.88 T. The black curves
are the fittings. (d) 3d plot of the trion evolution with various
magnetic fields. The laser is 45� polarized. The data are inverted
for clarity. (e) The electron (black dots) and hole (orange dots)
Zeeman splitting as a function of the magnetic fields.
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Thus, the inner and outer transitions are strictly linearly
polarized and orthogonal to each other, which inhibits
spontaneously generated coherence (SGC) [13]. The ob-
servation of the quartet demonstrates that under a trans-
verse magnetic field, all four trion transitions are optically
allowed and obey well defined polarization selection rules.

The evolution of the trion states as a function of the
magnetic field is illustrated with the fan diagram in
Fig. 2(d). The trion states start with a single peak at zero
magnetic field and split into four lines at finite magnetic
fields. The energy difference between transitions V1 and
H1 (H2) corresponds to the hole (electron) Zeeman split-
ting. The electron and hole Zeeman splittings are plotted in
Fig. 2(e) as a function of the applied magnetic fields. The
linear fittings yield jge?j and jgh?j of 0.48 and 0.31,
respectively. Although the absolute signs of jge?j and
jgh?j are not identified experimentally, we are able to tell
that jge?j and jgh?j have the same sign.

In region II of Fig. 2(a), spin relaxation is inhibited.
When the laser beam is resonant with transition V1, as
shown in Fig. 3(a), the electron spin in jx�i state will be
excited to the trion state jt�i and then relax equally to the
two spin ground states as suggested by the comparable
absorption strengths and linewidths. That is to say, because
the spin flip resonant Raman scattering process is now
allowed in the Voigt profile, the optical induced spin flip

process is dramatically ‘‘sped up’’, ensuring fast spin
cooling. Since the electron spin in the ground state has a
much slower relaxation rate than the trion spontaneous
decay rate, the electron spin will be optically pumped
into the jx�i spin state within a few radiative cycles. The
signature of optical pumping is that transition V1 becomes
transparent to the laser beam. The preparation of jx�i
works in a similar way. This is clearly demonstrated in
bias range II of Fig. 2(a). When the laser is on resonance
with V1 (V2), the absorption is strongly suppressed and the
transition becomes transparent. Thus, the polarized spin
states can be selectively prepared in either the jx�i or jx�i
spin state.

The mechanism of the spin state preparation can also be
explained in terms of saturation spectroscopy. A simple
rate equation calculation for a three level lambda system
gives the saturation intensity for a trion transition as ISAT ’

ISAT0

�s
� , where ISAT0

is the trion saturation intensity at zero
magnetic field, �s is the spin relaxation rate, and � is the
trion spontaneous decay rate. The spin relaxation time 1

�s

has been reported to be on the order of tens of milliseconds
[3]. It is much longer than the trion decay time 1

� , which is
about a few hundred picoseconds [20]. Therefore, in the
presence of the transverse magnetic fields, the saturation
intensity ISAT of the trion system could be about 6 to 7
orders of magnitude weaker than ISAT0

. Thus, the trion
transition is easily saturated and becomes transparent to
the optical beam.

The data in the transition region from I to II in Fig. 2(a)
show the signature of a bias dependent electron g factor,
which leads to transitions H1 and H2 evolving from two
well-resolved lines in region I into a central absorption
peak in region II. Since transitions H1 and H2 are nearly
degenerate in region II, when the laser is on resonance with
transitionH1, it is also nearly resonant withH2. Therefore,
the optical pumping effect is partially canceled by the
bidirectional pumping induced by the same optical field.
Hence, the optical pumping effect is suppressed and results
in the central absorption peak. The origin of this behavior
remains under investigation, but it is likely that the strong
bias dependence is more complex than the bias dependent
g factors reported earlier in quantum wells [22] and for
hole in QDs [23]. Fortunately, the behavior does not impact
the main qualitative conclusion of the work.

In order to prove that the laser beam leads to nearly
complete spin polarization and prepares the spin state as
jx�i (jx�i) by pumping transition V1 (V2), a polarization
inversion beam (PIB) is tuned to be on resonance with
transition V2 (V1). As shown in Fig. 3(a), while the PIB is
tuned to be on resonance with transition V1, it repolarizes
the spin ground states prepared by pumping transition V2
(i.e., redistributes the population between the spin ground
states). This leads to the recovery of the absorption peaks at
transitions V2 and H2. Figure 3(c) and 3(d) show that
transitions V1 and H1 can also be recovered by tuning
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FIG. 3 (color online). Demonstration of the spin state prepa-
ration in jx�> (jx�>) state at magnetic field 1.32 T and gate
voltage 0.12 V. The scanning laser is 45� polarized and the PIB is
vertically polarized. (a) and (b) [(c) and (d)]. The PIB is resonant
with the transition V1 (V2) while probing the transitions H2 and
V2 (H1 and V1). (e) One beam absorption spectrum of the trion
state in the absence of the PIB. The absorption of transitions V1
and V2 are strongly suppressed due to the optical pumping
effect. Since the degeneracy of transitions H1 and H2 are lifted
by increasing the magnetic field to 1.32 T, the central peak is also
suppressed.
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the PIB to be on resonance with transition V2. Considering
that the spin cooling process prepares a low-entropy po-
larized spin state, depending on the intensity of the PIB, the
effect of the PIB is to increase the entropy of the system by
generating a mixed spin ground state at low intensity, or
reversing the spin polarization at high intensity.

The excited state decay rate is 2� times the absorption
linewidth in the absence of pure dephasing or spectral
wandering. Nearly degenerate differential transmission
(NDT) is particularly sensitive to these latter two effects
[24,25]. We have performed NDT on the trion state (data
not shown), and while the data are complicated by the
effect of the Fano interference, they show no evidence of
either significant pure dephasing or spectral wandering.

The optical pumping rate is analyzed by the method
developed in Ref. [14]. When the laser is on resonance
with one trion transition, the four level model can be
reduced to a three level lambda system, as shown in the
dashed box in Fig. 3(a). To keep the discussion general, the
trion decay rates to the two spin ground states jx�i and
jx�i are �t�x� and �t�x�, respectively. The optical pump-
ing rate is calculated to be
 

� �
��t�x�
6b�1=3

�32=3 � 2� 32=3b� 32=3b2 � 16� 32=3r2

� 3�1=3 � 3b�1=3 � 31=3�2=3�; (1)

� � 72r2 � 1
3 	46 656r4 � 27�1� 2b� b2 � 16r2�3
1=2,

where r � �
�t�x�

, � is the Rabi frequency, the branching

ratio b is �t�x�
�t�x�

. If we take b � 1 and r� 1, the optical
pumping rate is �t�x�=2, as shown in Ref. [14].

Using the line shape data in Fig. 3, a linewidth of order
1.2 GHz (1.5 GHz), in the absence of pure dephasing or
spectral wandering, corresponds to �t�x� (�t�x�) of 7:5�
109 s�1 (9:4� 109 s�1). In the spin state preparation ex-
periment, the Rabi frequency of the pump beam approxi-
mately equals �t�x�. Thus, by inserting b � 1:25 and
r � 1 into Eq. (1), we infer an optical pumping rate of
order 4� 109 s�1. The optical pumping rate inferred from
the measured linewidth may be an upper limit if the
linewidth is broadened by the spectral diffusion process
[16]. The hole coupling to the continuum states might also
result uncertainty in the radiative lifetime (at most a factor
of 3) but not affect the qualitative speed up by a few orders
of magnitude due to the magnetic field induced state mix-
ing. Using a more conservative trion relaxation rate of 1�
109 s�1 reported by Ref [26], our scheme infers an spin
state initialization rate of order 5� 108 s�1.

The Voigt profile introduces a limitation to the optical
pumping efficiency [14]. This arises from the fact that
transitions V1 and V2 have the same polarization selection
rules. When the laser is resonant with transition V1 (V2),
transition V2 (V1) will be off-resonantly coupled, which

causes a small amount of the spin population to be pumped
back. As mentioned above, this type of off-resonant cou-
pling is responsible for the central absorption peak in
Fig. 2(a). At a magnetic field of 0.88 T, a spin state
preparation efficiency of �98:9� 0:4�% (the error comes
from the measurement noise) is achieved experimentally,
which corresponds to a spin temperature of 0.06 K
[2,27,28]. This demonstrates laser cooling of an electron
spin from 5 (the experimental temperature) to 0.06 K in a
singly charged QD. To reach the same efficiency at 5 K by
thermal equilibration, the applied magnetic field would
need to be 69 T at a much slower initialization speed as
well.
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Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration
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We consider the initialization of the spin state of a single electron trapped in a self-assembled quantum
dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the
growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse
of the spin-conserving trion relaxation rate. This method is several orders of magnitude faster than with
the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This
increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots,
the error is very small.

DOI: 10.1103/PhysRevLett.98.047401 PACS numbers: 78.67.Hc, 03.67.Lx

In a recent experiment [1], Atatüre and co-workers
demonstrated high fidelity spin-state preparation of an
electron in a self-assembled InAs=GaAs quantum dot
(QD). Their purifying mechanism coupled the resonant
laser excitation of the QD with heavy-light hole mixing
to induce a small, but finite, degree of spin-flip Raman
scattering. These experiments were performed with the
magnetic field aligned in the growth direction of the QD
(the Faraday configuration), and this was shown to be
effective in suppressing deleterious spin flips caused by
the nuclear hyperfine field.

Although fidelities very close to unity ( � 99:8%) were
obtained through this mechanism, for quantum information
processing purposes one would also like state preparation
to be fast. The speed of the scheme in Ref. [1] is limited by
the rate of hole-mixing spin-flip trion relaxation, which
was determined to have a characteristic time of �1 �s,
corresponding to the measured rate of 100 kHz. This is
slow compared with the picosecond time scale on which it
is hoped that quantum operations will be performed in such
dots [2–6].

It is the purpose of this Letter to show that a magnetic
field aligned perpendicular, rather than parallel, to the
growth axis allows the purification of the spin to near-unity
fidelities with a characteristic time scale of 2��1 � 1 ns,
where � � 300 MHz is the trion relaxation rate without
spin flip as measured by Atatüre. This Voigt configuration
is therefore some 3 orders-of-magnitude quicker than the
Faraday configuration of Ref. [1].

The price paid for this dramatic speedup is that now both
ground states are optically coupled to the trion. This inevi-
tably leads to a reduction in the maximum obtainable
fidelity, as it provides a path back for the population
localized in the desired level. However, as we will show,
this effect decreases with increasing field strength such
that, for a typical InAs QD, the maximum obtainable
fidelity typically differs from unity by only 0.3% at a field
of 1 T and 0.005% at 8 T.

We consider a singly charged self-assembled InAs QD
with growth direction z. Figure 1 shows our four-level
model that describes the pertinent features of the system.
With B field aligned in the x direction, the Zeeman energy
of a QD electron is H e

B � gex�BBxsex � EeBs
e
x, where gex is

the electronic g factor, �B is the Bohr magneton, Bx is the
magnitude of the field, and sex � �1=2 corresponds to the

 

|τ +

|τ

|x+

|xE e
B

E h
B

V1 V2

H1 H2

FIG. 1 (color online). The four levels of the electron-trion
system in the Voigt basis consists of two Zeeman-split single-
electron ground states jx�i with spins in the x direction, and two
trion levels j��i with heavy-hole spins also in the x direction.
Arrows indicate allowed optical transitions with H, V denoting
two orthogonal linear polarizations. State preparation is achieved
by resonantly pumping the V1 transition. This populates the trion
level j��i, which subsequently relaxes with rate � back to both
ground states, resulting in a partial transfer of population from
jx�i to jx�i. This simple picture is complicated by the fact that
the same laser also drives the V2 transition, albeit off resonantly.
This results in a small pumping of population in the opposite
direction and hence a slight decrease in the maximum obtainable
purity. We take the relaxation rate � � 1:2 �eV and g factors
gex � �0:46 and ghx � �0:29. For a field of 1 T, the Zeeman
splitting are then EeB � �27 �eV and EhB � 17 �eV.
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electron spin. We have measured the magnitude of the
electron g factor to be jgexj � 0:46 [7], which is similar
to values in the literature [1,8].

Our measurements also indicate that the behavior of
the heavy-hole component of the trion in this field can
be described with a Zeeman Hamiltonian H h

B �
�ghx�BBxshx � EhBs

h
x , where shx � �1=2 are the eigenval-

ues of a pseudospin, the components of which correspond
to heavy-hole states aligned in the x direction, and ghx is the
hole g factor, which we determine to have a magnitude of
jghx j � 0:29. Our measurements do not give us access to the
signs of these two g factors, but here we take both to be
negative as suggested by some recent results [1,9]. Our
scheme relies neither on this assumption about the signs,
nor indeed even on ghx being nonzero.

The four levels of our model are then the two electron
ground states with spins in the x direction, jx�i �
2�1=2	j#i � j"i
, where j#i and j"i represent electron spins
in the z direction, and the two trion levels, j��i �
2�1	j#"i � j"#i
	j+i � j*i
, where j+i and j*i denote
heavy-hole states also aligned in the z direction. Figure 1
shows the allowed optical transitions between these
levels. These transitions are linearly polarized and we
have defined the polarization vectors in terms of �� cir-
cular polarizations as V � 2�1=2	�� � ��
 and H �
2�1=2	�� � ��
. Our experiments [7] confirm that the
level diagram of Fig. 1 provides an accurate description
of the system up to a field strength of a few Tesla, and we
expect this model to hold for even higher fields [10].

We drive the system with a V-polarized laser tuned on
resonance with the transition from jx�i to j��i, which is
denoted V1 in Fig. 1. This illumination will also drive the
V2 transition and this off-resonant driving is the main
source of nonideality considered in our model. We elect
to drive the V1 transition because, since we take the sign of
both electron and hole g factors to be the same, the detun-
ing of V2 with respect to driving transition V1 is �B �
	gex � ghx
�BBx � Eex � Ehx . The magnitude of this detun-
ing is greater than that of �B � 	g

e
x � g

h
x
�BBx � Eex �

Ehx , which is the detuning of transition H2 with respect to
transitionH1. As we will show, the larger this detuning, the
smaller the deleterious effects of the off-resonant transition
[11].

In the rotating frame then, the Hamiltonian of our sys-
tem with driven V1 transition in the basis
fjx�i; jx�i; j��i; j��ig is

 H �

0 0 � 0
0 0 0 �e�i�Bt

� 0 0 0
0 �ei�Bt 0 0

0
BBB@

1
CCCA; (1)

where � is the Rabi energy of the V1 transition, which we
assume to be independent of magnetic field strength and
identical with that of the V2 transition. We have set @ � 1.
As this Hamiltonian shows, the laser drives not only the

transition with which it is resonant, but also the unintended
transition with terms oscillating with frequency ��B. In
writing this Hamiltonian, we have neglected hole mixing
since it is both expected to be small [1], and can in any case
be incorporated into the current scheme without significant
change [12].

We will determine the properties of this system through
the master equation for the density matrix � in the
Lindblad form

 _� � �i�H ; �� �
X
i

Li���; (2)

where the sum is over all trion relaxation channels, each of
which is described by a Lindblad superoperator

 L i��� � Di�D
y
i �

1
2D
y
i Di��

1
2�D

y
i Di: (3)

Since the trion can relax through all four optical tran-
sitions shown in Fig. 1, we need to consider the four
independent jump operators: D1 �

����
�
p
jx�ih�� j, D2 �����

�
p
jx�ih�� j, D3 �

����
�
p
jx�ih�� j, and D4 �

����
�
p
jx�i

h�� j. In writing these operators, we have assumed that the
relaxation channels proceed incoherently. This is justified
since we will work in a regime where the Zeeman splittings
are large enough that j�Bj, j�Bj>� and the degree of
spontaneously generated coherence [13] is negligible. We
also assume, for the sake of simplicity and ease of presen-
tation, that the rate � is the same for all channels. On the
time scales considered here, the hole-mixing spin-flip re-
laxation, central to the mechanism of Ref. [1], is negligible.
Furthermore, since we will work at significant magnetic
fields ( * 1 T), ground-state spin flips caused by the nu-
clear hyperfine interaction are suppressed, as demonstrated
by Atatüre et al. [1], and further effects of the nuclear spins
are negligible, since they are operative over time scales far
longer than our initialization time [14]. Finally, we assume
that the initial state of the spin is unpolarized with ��� �
��� � 1=2 and all other elements of � zero.

Our elucidation of the properties of this system consists
of two parts. First, we derive the time taken for the system
to reach its asymptotic limit. This we do by neglecting the
effects of the off-resonant transition. Second, we include
the off-resonant effects and derive a limit on the maximum
fidelity obtainable imposed by this nonideality.

With a trion relaxation rate of � � 1:2 �eV and g
factors as stated, then even with a small applied magnetic
field, we work in a regime in which the detuning of the off-
resonant transition j�Bj is much greater than both � and
the Rabi energy �. In this limit we can assume that the
terms �e�i�Bt in the Hamiltonian of Eq. (1) oscillate
sufficiently rapidly that they approximate as self-averaging
to zero. In this case, the state j��i decouples from the rest
of the system and the Hamiltonian reduces to H �
�jx�ih�� j � H:c: Physically this means that the off-
resonant transition is so far off resonance that the laser
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induces no transitions from it. We will derive a correction
to this behavior later.

With this simplified Hamiltonian, there are only
three independent nonzero density matrix elements to con-
sider and these we organize into the vector v �
	�x�;x�; �x�;x�; Im�x�;��
. We have utilized the normal-
ization condition 1 � Tr� to eliminate ���;��.

The equation of motions for these components can then
be rephrased in terms of this vector as

 

_v � X � 	v� v1
; (4)

where

 X �
�� �� �2�
�� �� 0
2� � ��

0
@

1
A; (5)

and v1 � 	0; 1; 0
 is the stationary solution of this model,
which represents the qubit population completely localized
in state jx�i and hence 100% purified.

The time taken to reach this limit can be derived in the
following way [15]. The solution of Eq. (4) is

 v 	t
 � v1 � eXt	v0 � v1
 (6)

with initial vector v0 � 	
1
2 ;

1
2 ; 0
. In the long time limit this

can be approximated as

 v � v1 � 	v0 � v1
e�t=T0 (7)

with the characteristic time defined through T�1
0 �

minfjRe	�i
jg, where f�ig are the eigenvalues of matrix
X, all of which have negative real parts. This characteristic
time is found to be

 T0 �
3�1=3

�
�32=3	1� 4r2
 � 31=3�2=3 � 3�1=3��1 (8)

with � � 9r2 �
�����������������������������������������������������
192r6 � 63r4 � 36r2 � 3
p

and r �
�=�. In Fig. 2, we plot this characteristic time as a
function of the laser Rabi frequency in units of linewidth
and the inset shows a typical evolution of the system and
shows how well the behavior of the full system is approxi-
mated by Eq. (7) with T0 as above.

The characteristic time T0 has the following simple
limits:

 T0 �

�
�=�2 if �� �;
2=� if �� �:

(9)

If the driving is weak �� � then the time to reach the
asymptotic population is slow. However, for laser ampli-
tudes greater than the relaxation rate, the characteristic
time saturates at a value twice that of the trion lifetime.
This makes sense since, in this limit, the speed of the
system is limited by trion relaxation, in which case, one
half of the spin population is transferred to jx�i in time
��1, whence T0 � 2��1. With the value � � 1:2 �eV we
obtain T0 � 1:1 ns, which is far shorter that the hole-

mixing spin-flip transition time of ��1 � 1:6 �s of
Ref. [1]. Figure 2 also shows that this limit of T0 � 2��1

is a good approximation for all �=� * 1.
We now consider the inclusion of the off-resonant tran-

sition, which acts to reduce the asymptotic value of ���
away from unity. The full Hamiltonian of Eq. (1) depends
on time, and therefore we cannot simply set _� � 0 to find
the asymptotic solutions. Rather, we proceed by making
the following ansatz for the asymptotic density matrix
elements [16]:

 �ij	t! 1
 � �	0
ij �
X
�

�	�
ij e
�i�Bt; (10)

where the coefficients �	0;�
ij are stationary. We place this
ansatz into Eq. (2) and neglect terms oscillating as fre-
quencies faster than �B. This results in a set of algebraic
equation for the coefficients �	0;�
ij which we simply solve.
We obtain the following expressions for the steady-state
coefficients:
 

�	0
x�;x� �
�2 ��2

D
;

�	0
x�;x� � 1�
�2 � 3�2

D

�	0
��;�� � �	0
��;�� � �2=D;

�	0
x�;�� � i��=D;

�	�
x�;�� � 	�
	�

��;x�
� � �	i�� �B
=D;

(11)

where the denominator D � �2
B � 2�2 � 4�2, and all the

other coefficients are zero.
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FIG. 2 (color online). The characteristic time T0 describing the
approach of the system to its asymptotic limit as a function of the
Rabi frequency �. When �=� * 1, T0 � 2=�. Inset: The popu-
lation of the state jx�i as a function of time under continuous
illumination. The solid black line shows the result of numerical
integration of the master equation, whereas the dashed blue line
shows the analytic result of Eq. (7). Near-unity fidelity is
approached with a characteristic time of T0 � 1 ns. For both
plots, the parameters are the same as in Fig. 1 and for the inset
we have further set � � �.
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Let us define the fidelity of the state preparation as F �
h�j�j�i, where j�i is the desired target state with popu-
lation localized in the state jx�i and � is the actual density
matrix of the final states. This evaluates simply as F �
�x�;x� � �	0
x�;x� and starts with a value of 1

2 in the initial
unpolarized state, and is unity for 100% purification [17].
Let us define as � the amount by which F differs from
unity: � � 1� F. From Eqs. (11), we therefore find that
the state-preparation error is

 � �
�2 � 3�2

�2
B � 2�2 � 4�2 �

�2 � 3�2

�2
B

; (12)

where we have made use of j�Bj � �, �.
In Fig. 3 we plot the full result for � as a function of the

Rabi frequency. The most salient point is that for a field of
the order of 1 T, and with �=� � 1, the error � is of the
order of 3 10�3, which is very small, and of the order of
the measurement threshold described in Ref. [1].
Increasing the field, decreases the error and at a high
laboratory field such as 8 T the error is reduced to � �
5 10�5. These estimates agree very well with the results
of numerical integration of the equations of motion. It
should be noted that these values apply while the CW
illumination is still in effect. Turning off the laser allows
population trapped in the trion states to relax back to the
ground-state sector with rate �. Half of this population
ends up in the required state jx�i, reducing the error by a
factor of 2=3.

In summary then, we have considered the advantages of
using the Voigt configuration for the preparation of the spin
state of an electron in a self-assembled QD. Provided that
the Rabi frequency of the laser is greater than the trion
relaxation rate, the state preparation is fast, proceeding
with a time scale of 2��1 � 1 ns, which is orders of

magnitude faster than in the Faraday configuration. Use
of the Voigt configuration does, however, impose an upper
limit on the maximum obtainable fidelity, but this is
small, with the deviation from unity being � �
	�2 � 3�2
=�2

B � 10�3 at 1 T. This approach therefore
represents a fast way of initializing an electron spin to high
fidelities for quantum information processing.

This work was supported by ARO/LPS and by NSF
Grant No. DMR 0403465. We are grateful to M. Atatüre
for helpful discussions.
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We study in theory the generation and detection of electron spin coherence in nonlinear optical spectroscopy
of semiconductor quantum dots doped with single electrons. In third-order differential transmission spectra, the
inverse width of the ultranarrow peak at degenerate pump and probe frequencies gives the longitudinal spin
relaxation time �T1�, and that of the Stokes and anti-Stokes spin resonances gives the spin dephasing time
including the inhomogeneous broadening �T2

*�. The transverse spin relaxation time excluding the inhomoge-
neous broadening effect �T2� can be measured by the inverse width of ultranarrow hole-burning resonances in
fifth-order differential transmission spectra.
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I. INTRODUCTION

Electron spin coherence in semiconductor quantum dots
�QDs� is a quantum effect to be exploited in emerging tech-
nologies such as spin-based electronics �spintronics� and
quantum computation.1 The electron spin decoherence is a
key issue for practical application of the electron spin free-
dom and is also of fundamental interest in mesoscopic phys-
ics and in quantum physics. The electron spin decoherence in
QDs, however, is yet poorly characterized. By convention,
the spin decoherence is classified into the longitudinal and
the transverse parts, which correspond to the spin population
flip and the Zeeman energy fluctuation processes and are
usually characterized by the longitudinal relaxation time T1
and the transverse relaxation time T2, respectively. Most cur-
rent experiments are carried out on ensembles of spins, com-
posed of either many similar QDs �Refs. 2–5� or many rep-
etitions of �approximately� identical measurements on a
single QD.6–14 The ensemble measurements are subjected to
the inhomogeneous broadening of the Zeeman energy, which
results from the fluctuation of the QD size, shape, and com-
pound composition �and in turn the electron g-factor� and
from the random distribution of the local Overhauser field
�due to the hyperfine interaction with nuclear spins in ther-
mal states�. The inhomogeneous broadening leads to a
dephasing time T2

*.15–17 The three time scales characterizing
the electron spin decoherence can differ by orders of magni-
tude usually in the order of T1�T2�T2

*. For example, in a
typical GaAs QD at a low temperature ��4 K� and under a
moderate to strong magnetic field �0.1–10 T�, the longitudi-
nal relaxation time T1 can be in the order of
milliseconds,6–11,18 the transverse relaxation time T2 is up to
several microseconds,5,12,14 and the dephasing time T2

* can be
as short as a few nanoseconds.3,5,12,13

The issue is how to measure the characteristic times of
electron spin decoherence in QDs. There have been many
experiments both in optics4,9–11,18 and in transport,6–8 which
establish the longitudinal spin relaxation time T1 in QDs of
different materials. The dephasing time T2

* has also been
measured for QD ensembles,2,3,5,12,13 giving a lower bound
of T2. Spin echo in microwave electron spin resonance �ESR�

experiments is a conventional approach to measuring the
transverse spin relaxation time T2 excluding the inhomoge-
neous broadening,19–21 which, however, is less feasible for
III-V compound quantum dots due to the fast time scales in
such systems �T2�10−6 s and T2

*�10−9 s�. Indeed, the re-
markable spin echo experiments in coupled QDs done by
Petta et al. are performed with rather long dc voltage pulses
instead of instantaneous microwave pulses.12 Alternatively,
picosecond optical pulses may be used to manipulate elec-
tron spins via Raman processes22 and realize the spin echo,
which, however, still need to overcome the difficulty of sta-
bilizing and synchronizing picosecond pulses in microsecond
time spans. A recent experiment by Greilich et al. also shows
that the inhomogeneous broadening effect can be filtered out
from the spin coherence mode locked by a periodic train of
laser pulses.5

In this paper, we will study the frequency-domain nonlin-
ear optical spectroscopy as another approach to measuring
the electron spin decoherence times. Particularly, the trans-
verse relaxation rate T2

−1 is correlated to the width of ultra-
narrow hole-burning peaks in fifth-order differential trans-
mission �DT� spectra. This hole-burning measurement of the
spin relaxation time is analogous to the exploration of slow
relaxation of optical coherence in atomic systems by the
third-order hole-burning spectroscopy.23 Here, the fifth-order
nonlinearity is needed because the creation of spin coherence
by Raman processes involves at least two orders of optical
field and hole-burning two more. The state-of-the-art spec-
troscopy already has the ultrahigh resolution �much better
than megahertz-resolution� to resolve the slow spin decoher-
ence in microsecond or even millisecond time scales.24–26

The organization of this paper is as follow. After this in-
troductory section, Sec. II describes the model for the QD
system and the master-equation approach to calculating the
nonlinear optical susceptibility. Section III presents the re-
sults and discussion. Section IV concludes this paper. The
solution of the master equation in the frequency domain is
presented in the Appendix.

II. MODEL AND THEORY

The system to be studied is a semiconductor QD doped
with a single electron. The geometry of the QD under an
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external magnetic field and optical excitation is shown in
Figs. 1�a� and 1�c�. The QD is assumed to be a shape with
small thickness in the growth direction and relatively large
radius in the lateral directions, as in the usual cases of fluc-
tuation GaAs QDs.3,10 To enable the generation and manipu-
lation of the electron spin coherence through Raman pro-
cesses, a magnetic field is applied along a lateral direction
�x axis�. The propagation directions of the pump and probe
laser beams are close to the growth direction �z axis�. The
two electron spin states ��� are split by the magnetic field
with Zeeman energy �0. The strong confinement along the z
axis induces a large splitting between the heavy hole and the
light hole states, thus the relevant exciton states are the
ground trion states ��� and ��̄�, which consist of two electrons
�including the doped one and one created by optical excita-
tion� in the singlet spin state and one heavy hole in the spin
states �+3/2� and �−3/2� �quantized along the z axis with
nearly zero Zeeman splitting�, respectively. Similarly, we can
also neglect the excitation of higher-lying trions, biexciton,
and multiexciton states since the energy of adding an exciton
in each case is well separated from energy of the lowest trion
states. The selection rules for the optical transitions are de-
termined by the �approximate� conservation of the angular
momentum along the growth direction so that a circularly
polarized light with polarization �+ or �− connects the two
electron spin states to the trion state ��� or �̄�, respectively
�see Fig. 1�b��. The relaxation processes in the system are
parametrized by the exciton recombination rate �1, the exci-
ton dephasing rate �2, the longitudinal spin relaxation time
T1, and the transverse spin relaxation time T2. The inhomo-
geneous broadening leads to a random component � to the
Zeeman splitting: �c=�0+�, which is assumed to be a
Gaussian distribution g���=e−�2/�2	*2� / ��2
	*�. The spin
dephasing time including the inhomogeneous broadening
T2

*�1/	*�T2, unless it is artificially set to be T2
*=T2 �by

setting 	2
*=0�. The hole spin relaxation is neglected since it

is extremely slow when the hole is confined in the trion
states.11 The theory presented here can be extended straight-
forwardly to include the hole spin relaxation, the light-hole
states, the hole mixing effect �which leads to the imperfec-
tion in the selection rules, for example, in InAs QDs�, the
multiexciton states, the inhomogeneous broadening of the
trion states, and so on, but we expect no qualitative modifi-
cation of the resonance features related to the electron spin
coherence in the nonlinear optical spectra. For simplicity, we

shall consider only �+-polarized optical fields �extension to
other polarization configurations may provide some flexibil-
ity for experiments and is trivial in the theoretical part�.
Thus, the model is reduced to a �-type three-level system,
consisting of the two electron spin states ��� and the trion
state ���. The �-type three-level model, in spite of its sim-
plicity, is the basis of a wealth of physical effects, including
electromagnetically induced transparency,27 lasing without
inversion,28 and stimulated Raman adiabatic passage,29 and it
has been successfully applied to study transient optical sig-
nals of doped QDs.3,30

The dynamics of the system is described in the density
matrix formalism with �,� as the density matrix elements
between the states ��� and ���. The optical excitation and
relaxation are accounted for in the master equation as

�t�,± = − i�Eg � ��0 + ��/2 − i�2��,± − iE�t��,� + iE�t��,±

+ iE�t�±,±, �1a�

�t�,� = − 2�1�,� + 2I�E*�t��,+ + E*�t��,−� , �1b�

�t±,± = − �p�±,± − p±�,��/T1 + �1�,� − 2I�E*�t��,±� ,

�1c�

�t±,� = �1�,� − i�±��0 + �� − i/T2�±,� + iE*�t��,�

− iE�t��,±
* , �1d�

where Eg is the energy gap and p± is the equilibrium popu-
lation of the spin states in the absence of the optical excita-
tion; the optical field E�t�=	 jEje

−i�jt contains different fre-
quency components. The transition dipole moment is
understood to be absorbed into the field quantities. In the
rotating wave reference frame, the energy gap Eg is set to be
zero and the optical frequencies � j are measured from the
gap. The first term in the right-hand side of Eq. �1d� is the
spin coherence generated by spontaneous emission,30–32

which has been demonstrated in time-domain experiments
with significant effects on spin beats.3 We will show that it
produces extra resonances in the fifth-order DT spectra.

To calculate the nonlinear optical susceptibility, the mas-
ter equation is obtained in the frequency domain �as given in
the Appendix�. With the spectrum of the optical field given
by E���=	 j2
Ej���−� j�, the density matrix can be ex-
panded as

�,���� = 	
j,. . .,k;m,. . .,l

2
Ej ¯ EkEm
*
¯ El

*�,�
�j¯km̄¯l̄����

− � j¯km̄¯l̄� , �2�

where � j¯km̄¯l̄
� j+ ¯ +�k− ��m+ ¯ +�l�. The deriva-

tion of the density matrix component �j¯km̄¯l̄� up to the fifth
order is lengthy but straightforward. The final result is aver-
aged with the inhomogeneous broadening distribution g���.

FIG. 1. �Color online� Schematics of �a� the quantum dot, �b�
the selection rules for optical transitions, and �c� the optical detec-
tion geometry.
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III. RESULTS AND DISCUSSIONS

The linear optical susceptibility is given by

�j� =� g���
� j − Eg ± ��0 + ��/2 + i�2

d� . �3�

In fluctuation GaAs QDs, the exciton dephasing is much
faster than the spin dephasing due to the inhomogeneous
broadening ��2

−1�0.1 ns�T2
*�10 ns�,3 so the resonance

width in linear optical spectra is usually dominated by the
trion state broadening, revealing little information about the
spin decoherence.

In third-order optical response, the population and off-
diagonal coherence of the electron spin are generated by the
Raman processes,

±,±→
E2

�,±
�2�→

E1
*

±,±
�21̄� � �21̄ +

i

T1
�−1

, �4a�

±,±→
E2

�,±
�2�→

E1
*

�,±
�21̄� � ��21̄ ± ��0 + �� +

i

T2
�−1

, �4b�

corresponding to the illustrations in Figs. 2�a� and 2�b�, re-
spectively. Another optical field with frequency �1 brings
the second-order spin coherence into the third-order optical

coherence �,±
�211̄�. The DT spectrum as a function of the pump

frequency �1 and the probe frequency �2 is

SDT��2,�1� � − I��,+
�211̄� + �,−

�211̄�� , �5�

which presents the ultranarrow resonances around �21̄=0
and �21̄= ±�0, with resonance widths T1

−1 and T2
−1, related to

the spin population and off-diagonal coherence in Eqs. �4a�
and �4b�, respectively. Such resonances are shown in Fig. 3
�as dot black lines�. Thus, the spin relaxation times T1 and T2
are measured, but when the inhomogeneous broadening is
included, since usually T2�T2

*, the Stokes and anti-Stokes
Raman resonances at �21̄= ±�0 will be smeared to be a peak
resembling the inhomogeneous broadening distribution as

� ±,�
�21̄�g���d� � − i
g��21̄ � �0� . �6�

The effect of the inhomogeneous broadening is clearly seen
in Fig. 3 �solid red lines�. So in usual cases, the third-order
DT spectra measure the T2

* instead of the T2. The resonance
at degenerate pump and probe frequencies ��21̄=0� is related
to the spin population and is immune to the random distri-
bution of the electron Zeeman energy. So the longitudinal
spin relaxation time T1 can be deduced from the third-order
DT spectra, regardless of the inhomogeneous broadening.

We note that the resonance features of the third-order sus-
ceptibility shown in Fig. 3 are consistent with the recent
experimental data.18

To measure the transverse relaxation time excluding the
inhomogeneous broadening effect, the fifth-order nonlinear-
ity can be used. In the fifth-order optical response, the spin
coherence in the fourth order of optical field has very rich
resonance structures. For instance, a double resonance such
as

+,−
�432̄1̄� �

1

��31̄ − ��0 + �� +
i

T2
���432̄1̄ − ��0 + �� +

i

T2
�
�7�

arises from the excitation pathway

−,−→
E3

�,−
�3�→

E1
*

+,−
�31̄�→

E4

�,−
�431̄�→

E2
*

+,−
�432̄1̄�, �8�

as depicted in Fig. 4�a�. The double resonance will manifest
itself in a two-dimensional DT spectrum as an ultranarrow
peak at �31̄=�432̄1̄=�0+� with width of �T2

−1. When the
inhomogeneous broadening is included, the ultranarrow reso-
nance will be smeared into a broadened peak along the di-
rection �31̄=�432̄1̄ with width of �1/T2

*, but in the perpen-

FIG. 2. Schematics of Raman processes generating �a� the spin
population and �b� the off-diagonal spin coherence.

FIG. 3. �Color online� Third-order DT spectra of QDs doped
with single electrons. The parameters are chosen such that the Zee-
man energy �0=20 �eV, the spin population p±=0.5, the pump
frequency �1=Eg−10.5 �V, �1=5 �eV ��1

−1�0.12 ns�, �2

=6 �eV ��2
−1�0.1 ns�, T1=100 ns, T2=100 ns, and T2

*=10 ns for
the solid �red� lines and T2

*=T2 �no inhomogeneous broadening� for
the dot �black� lines. The insets are enlarged plots, showing details
of the resonances.

FIG. 4. �a� Schematics for a fourth-order optical process that
generates spin coherence with a double resonance structure. �b� The
Feynman diagram for the fifth-order optical response involving the
spontaneous emission, in which the optical field and the vacuum
field are represented by the wavy arrows and the dotted arrow,
respectively.
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dicular direction �defined by �31̄=−�432̄1̄�, the peak width
remains unchanged. So when �432̄1̄ is fixed around �0 and
�31̄ is scanned, or vice versa, the DT spectrum will present a
sharp peak whose width measures the inverse transverse re-
laxation time T2

−1. This peak has the character of hole burn-
ing: The first frequency difference acts just as a selection of
QDs with Zeeman energy �0+�=�432̄1̄ from the inhomoge-
neously broadened ensemble. The hole-burning resonance
resulting from the excitation pathway in Eq. �8�, however,
emerges together with the resonance associated with the spin
population ��42̄+ i /T1�−1, as given in Eq. �4a�. To avoid the
complication of mixing two types of resonance structures,
we would rather make use of another mechanism for spin
coherence generation, namely, the spontaneous emission that
connects the trion state to the two spin states through the
vacuum field �related to the first term in the right-hand side
of Eq. �1d��.3,30–32

The generation of spin coherence in the fifth-order optical
response involving the spontaneous emission can take a
quantum pathway like

−,−→
E3

�,−
�3�→

E1
*

+,−
�31̄�→

E4

�,−
�431̄�→

E2
*

�,�
�432̄1̄�→

�1

−,+
�432̄1̄�, �9�

where the last step is the spontaneous emission. This optical
process is illustrated by the Feynman diagram in Fig. 4�b�.
The spin coherence generated by the spontaneous emission
and that by optical excitation can have opposite spin indices

�+,−
�31̄�→−,+

�432̄1̄��, which is impossible in quantum pathways
without the spontaneous emission �as can be seen from Fig.
4�a��. Thus, the double resonance becomes

−,+
�432̄1̄� �

�1/��432̄1̄ + i2�1�

��31̄ + ��0 + �� +
i

T2
���432̄1̄ − ��0 + �� +

i

T2
� ,

�10�

which is well separated from the spin population resonance.
The spectrum is measured by fixing �432̄1̄ to be the hole-
burning frequency �0+� with ��1/T2

* and fine tuning �13̄
to be �432̄1̄+�. As shown in the inset of Fig. 5, the optical
frequencies can be configured such that �4 and �1 are fixed,
�3 are redshifted by �0+�+� from �1, and �5 and �2 are
redshifted by �0+�−�41̄ from �1 and �3, respectively.

Thus, the fifth-order optical response �,±
�5432̄1̄� oscillates at the

probe frequency �4, which enables the signal to be measured
in the DT setup instead of six-wave mixing ones. We note
that the resonance due to the spin population ���532̄1̄

+ i /T1�−1 contributes only a constant background since
�532̄1̄
0 in the above frequency configuration. As shown in
Fig. 5, which plots the fifth-order DT spectrum as a function
of �
�432̄1̄−�0 and the fine tuning �
�13̄−�432̄1̄, a very
narrow hole in the spectrum as a function of �31̄ is burnt
around �432̄1̄, with width given by T2

−1. Along the direction
�31̄=−�432̄1̄ ��=0�, the resonance is extended by the inho-
mogeneous broadening as expected. Sectioned plots of the
DT signal with fixed � are shown in Fig. 6�a� for various
transverse relaxation time. The resonance width is given by
the transverse relaxation rate, demonstrating unambiguously
that the T2 is measured by the hole-burning effect. The hole-
burning resonance can also be detected by varying the probe

FIG. 5. Contour plot of the fifth-order DT spectrum of the QDs
as a function of �
�432̄1̄−�0 and �
�13̄−�432̄1̄. The probe fre-
quency is fixed to be �4=22�eV, the pump frequency �1 is fixed
at 9 �eV, and the other three pump frequencies are scanned with
�532̄1̄=0 �which makes �15̄=�32̄=�0+�−�41̄ and �13̄=�52̄=�0

+�+�, as indicated in the inset�. The Zeeman energy �0=20 �eV,
the spin population p±=0.5, and the relaxation rates are such that
�1=5 �eV ��1

−1�0.12 ns�, �2=6 �eV ��2
−1�0.1 ns�, T1=100 ns,

T2=100 ns, and T2
*=1 ns.

FIG. 6. �Color online� �a� The sectioned plot of Fig. 5 with �
=0 �i.e., �432̄1̄=�0�. �b� The fifth-order DT signal as a function of
the probe frequency with pump frequencies fixed to be such that
�1=9 �eV, �5=2 �eV, and �13̄=�52̄=�0=20 �eV. In both fig-
ures, the transverse spin relaxation time T2=20, 50, 100, and 200 ns
for the dash-dot �black�, dash �blue�, dash-dot-dot �red�, and solid
�green� lines from top to bottom, respectively, and the dot �blue�
line is calculated with the spontaneously generated spin coherence
artificially switched off �for T2=100 ns�. The parameters are the
same as in Fig. 5.
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frequency with the pump frequencies fixed, as demonstrated
in Fig. 6�b�. The role of the spontaneous emission-generated
spin coherence is verified by the absence of the ultranarrow
resonance with artificial switch-off of the relevant term in
Eq. �1d�.

IV. CONCLUSIONS

The spin coherence can be generated and detected in non-
linear optical spectroscopy of quantum dots doped with
single electrons, which is studied in this paper up to the
fifth-order nonlinearity with a �-type three-level model. The
electron spin coherence is generated by the optical field
through Raman processes as well as by spontaneous emis-
sion of the trion. The spin population and off-diagonal co-
herence manifest themselves in third-order differential trans-
mission spectra as ultranarrow resonances. The
inhomogeneous broadening smears out the sharp Stokes and
anti-Stokes peaks related to the off-diagonal spin coherence.
Thus, the longitudinal spin relaxation time T1 and the
dephasing time T2

* are measured by the third-order spectra. In
the fifth-order optical response, the generation of the spin
coherence by both second- and fourth-order optical processes
leads to double resonance structures in two-dimensional DT
spectra, which are smeared by the inhomogeneous broaden-
ing along one direction in the frequency space but presents
ultranarrow hole-burning resonances along the perpendicular
direction. So the transverse spin relaxation time T2 is mea-
sured as the inverse width of the hole-burning peak. The

spontaneous emission-generated spin coherence3,30 is useful
to produce hole-burning resonances well separated from the
spin-population resonances in the fifth-order spectra. The fre-
quencies of the optical field can be configured properly to
enable the detection of the signal in the DT setup instead of
the multiwave mixing ones. In practice, the pump and probe
frequencies may be generated from a single continuous-wave
laser source by, e.g., acousto-optical modulation.26 Since the
ultranarrow hole-burning peaks are rather insensitive to the
global shift of the laser frequencies and variation of the hole-
burning frequency, nonstabilized laser sources may be used
to resolve the slow spin decoherence.26 In the present re-
search, the electron spin decoherence and the inhomoge-
neous broadening are parametrized with a few time scales
�T1, T2, and T2

*�. The theoretical framework in this paper can
be readily extended to study the effect of the spectral
diffusion33–35 of the electron spin on the nonlinear optical
spectroscopy. We expect that the leading-order effect of the
spectral diffusion can also be eliminated in the fifth-order
nonlinear optical susceptibility.
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APPENDIX: SOLUTION OF THE MASTER EQUATION

The master equation in Eq. �1� can be solved in the fre-
quency domain by Fourier transformation to be

�,±��� =� − E�� − ��±,±��� − E�� − ���,±��� + E�� − ���,����
� − Eg ± ��0 + ��/2 + i�2

d�

2

, �A1a�

�,���� = 	
±
� + E*�� − ���,±��� − E�� + ���,±

* ���
� + i2�1

d�

2

, �A1b�

±,±��� = p±2
���� − �� + i�1 + ip±/T1� � E*�� − ���,±��� − E�� + ���,±
* ���

�� + i/T1��� + i2�1�
d�

2


+ �i�1 − ip±/T1� � E*�� − ���,���� − E�� + ���,�
* ���

�� + i/T1��� + i2�1�
d�

2

, �A1c�

+,−��� =
i�1�,����

� − ��0 + �� + i/T2
+� − E*�� − ���,−��� + E�� + ���,+

* ���
� − ��0 + �� + i/T2

d�

2

. �A1d�
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Proposal for optical U(1) rotations of electron spin trapped in a quantum dot
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We present a proposal to optically implement rotations of the electron spin in a quantum dot about the
growth direction �z axis�. In particular, we make use of the analytic properties of sech pulses in two-level
systems to realize spin rotations about the growth direction by an arbitrary angle, for which we give an
analytical expression. We propose to use this scheme to experimentally demonstrate this spin rotation. Using
realistic system and pulse parameters we find the fidelity of the rotation to be more than 96% for pulses in the
picosecond regime, and robust against small errors in pulse parameters. We design a feedback �adaptive� loop
to correct for errors originating from unintended dynamics. The rotation is still evident—albeit with a large
fidelity loss—in the ensemble case, providing the possibility of demonstration of this optical spin rotation in an
ensemble of quantum dots.

DOI: 10.1103/PhysRevB.74.205415 PACS number�s�: 78.67.Hc, 03.67.Lx, 42.50.Md

I. INTRODUCTION

A promising qubit candidate is the spin of an electron,
trapped in a quantum dot �QD� and manipulated optically via
Raman transitions involving a charged exciton �trion� state.
Such a scheme combines the merits of the spin in the solid
state environment �long coherence times, integrability� with
advanced laser technology �speed, focusing, pulse shaping�.
Recently, there has been significant experimental progress
towards the demonstration of the key DiVincenzo require-
ments for this qubit. In particular, the optical generation of
spin coherence has been demonstrated1–3 and the spin coher-
ence time has been shown to have a lower bound of 10 ns.1

The optically induced single-qubit rotation, however, has yet
to be experimentally shown for this system. In this paper,
after briefly reviewing other proposals for such a demonstra-
tion �Sec. II�, we present a theoretical design of an experi-
mental demonstration of spin rotations about the growth di-
rection in Sec. III which lends itself more appropriately for
an experimental demonstration, as it is tailored to the quan-
tum dot � system. In Sec. IV we review the solution of the
sech pulse in a two-level system. The spin rotation based on
these pulses is presented in Sec. V. The numerical simula-
tions are shown in Sec. VI with experimental details taken
into account; fidelity loss mechanisms are discussed and
quantified in Sec. VII and feedback loops are devised to
correct for unintended dynamics or uncertainty in pulse pa-
rameters, in Sec. VIII. Finally, Sec. XI contains simulation of
the spin rotation in an ensemble of dots.

II. REVIEW OF THE SYSTEM AND OTHER PROPOSALS

The relevant Hilbert space of the system consists of the
two spin states of the trapped electron and the optically ex-
cited heavy-hole trion state. A static in-plane magnetic field
splits the two spin states and defines the x direction. The
growth axis of the dot is the z direction and the optical axis
as well. The light used is circularly polarized along z. A

peculiarity of this system is that the trion level, though spin
polarized perpendicularly to the magnetic field, does not pre-
cess for fields of up to 5 T.4 Also, the spin Zeeman splitting
is typically small, on the order of tens of �eV’s in GaAs
�Ref. 1� and on the order of hundreds of �eV’s in InAs.5,6

Thus we have a �-type system with both transitions hav-
ing the same polarization and being very close in frequency,
as depicted in Fig. 1. Therefore, common assumptions in
Raman schemes such as polarization selectivity7 cannot be
used, whereas energy selectivity would require long pulses
compared to the spin precession period. This could be an
issue since the spin decoherence time should be long com-
pared to the gate time. Moreover, when the excited state
linewidth is large compared to the lower level splitting �spin
Zeeman splitting�—which is the case with GaAs dots—
energy selectivity is not well defined, even for long pulses.

A proposal which does not explicitly require selectivity
between the two transitions is available,8 but as will now be
explained it implicitly requires long pulses when the spin
Zeeman splitting is small. Specifically, in Ref. 8 two pulses
with a definite phase relation are used. Both pulses act on
both transitions. To remove fast oscillating terms, the condi-
tion

FIG. 1. �Color online� Energy levels of the three-level system,
comprised by the two electron spin eigenstates of �x and by the
trion.
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�B � � j�t� �1�

is imposed, where 2�B is the spin Zeeman splitting and � j is
the Rabi frequency of pulse j. The axis of rotation depends
on the ratio of the two Rabi frequencies and the phase be-
tween the two pulses. The angle of rotation is given by the
time integral of

�2 =
�

2
−��↑

2 + �↓
2 + ��

2
�2

, �2�

where � is the detuning. From the last relation, it is evident
that in order to achieve large rotation angles, long pulses are
needed, since the Rabi frequency is bounded from Eq. �1�.

Another proposal9 suggested to use a 	 pulse to populate
the trion state for some time, during which the precession of
the spin is used so that the �z̄� state acquires a phase and
subsequently a second 	 pulse recovers the �z� state popula-
tion by stimulated emission. This method of rotating requires
populating the trion state for a significant amount of time, so
that trion decay will significantly deteriorate the fidelity. The
operation will moreover be slowed down when the spin Zee-
man splitting is small. It also provides a scheme for rotations
only about the growth axis.

III. PROPOSAL OF ROTATIONS ABOUT Z

In the current proposal, contrary to the use of any kind of
selectivity between the two transitions, we choose a pulse
with sufficient bandwidth to act on both transitions. The
Hamiltonian in the ��z̄� , �z� , �T�	 basis has the form

H = 
 0 �B 0

�B 0 ��t�ei�0t

0 ��t�e−i�0t 
T
� . �3�

It is evident from the above form of the Hamiltonian, that the
pulse only couples the �z� state to the excited trion state. The
�z̄� state is indirectly coupled through the B field, as shown
schematically in Fig. 2. Therefore, for small spin Zeeman
splitting compared to the pulse bandwidth we can view in
our qualitative discussion the three-level system as two sys-
tems of dimensions 2 and 1, consisting of ��z� , �T�	 and ��z̄�	,

respectively. This of course is an approximation, strictly
valid only in the B→0 limit. For finite B we really have two
two-level systems sharing a common state. Clearly, fast reso-
nant pulses of area 2	 and arbitrary pulse shape will induce
a minus sign to the �z� relative to the �z̄� state, due to the
SU�2� character of the pseudospin. This amounts to a 	 ro-
tation of the spin about z.3,10 We propose the use of analyti-
cally solvable off-resonant 2	 pulses to design rotations
about z by an arbitrary angle, for which we provide an ana-
lytical expression.

It is well known that for a two-level system the sech pulse
shape of Rosen and Zener11 �RZ� yields an exactly solvable
evolution, for arbitrary detuning. As was more recently
shown, the RZ pulse belongs to a class of exactly solvable
pulse shapes.12 In what follows, we will make use of the
properties of the RZ pulses in the context of the three-level
system to design z rotations.

IV. REVIEW OF THE ROSEN-ZENER SOLUTION

Consider a two-state system, initially in the ground state,
�g�, with the two levels coupled by a time dependent Hamil-
tonian with a sech envelope and central frequency �o:

� sech��t�ei�0t � f�t�ei�0t, �4�

where � is the Rabi frequency, � is the bandwidth of the
pulse. Moving to the interaction picture, the problem reduces
to solving two coupled first order equations or, equivalently,
one second order equation of the form

FIG. 2. �Color online� Alternative depiction of the � system: the
two lower levels are the eigenstates of �z but not energy eigenstates,
since they are perpendicular to the magnetic field. This basis is
more suitable for imposing selection rules when circularly polarized
light is used because it is just the one spin state ��z�� that couples to
the trion. The other one ��z̄�� is coupled through the magnetic field.

FIG. 3. �Color online� Bloch vector representation of the pseu-
dospin; The pulse bandwidth is fixed ��=1� and the detuning var-
ies: �=0 red �dark grey� curve�, �=1 blue �black� curve� and �
=0.5 green �light grey� curve�. The plot is in the rotating frame of
the laser, not that of the unperturbed system.
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c̈e + �i� − ḟ/f�ċe + f2ce = 0, �5�

where cg �ce� is the coefficient of the ground �excited� state,
� is the detuning, and with the initial condition ce�−��=0.
By the change of variable

� =
1

2
tanh��t� + 1� , �6�

RZ bring the equation into the form of the hypergeometric
equation, where

a =
�

�
, �7�

c =
1

2
�1 + i

�

�
� . �8�

After imposing the initial conditions, the coefficients of the
ground ��g�� and excited ��e�� states are

cg = F�a,− a,c*,�� , �9�

ce = − i
a

c*�1−cF�a + 1 − c,1 − a − c,2 − c,�� . �10�

We see from Eq. �10� and by use of the properties of the
hypergeometric function that when

� = � �11�

there is no population transfer to the excited state for t→�,
i.e., ce���=0, and instead the pseudospin vector undergoes a
full cycle from �g� to �e� and back to �g� with the ground state
having acquired a phase factor

cg��� = −
� + i�

� − i�
� e−i, �12�

tan  =
2��

�2 − �2 . �13�

For � fixed, the path will be determined by the detuning, as
shown in Fig. 3.

V. USE OF RZ PULSES FOR RAMAN QUBIT ROTATION

For an arbitrary sech pulse, the evolution operator of the
whole three-level system, under the approximation of slow
precession �B�� is given by

U �

1 0 0

0 F�a,− a,c*,�� −
ia

c
�cF�a + c,− a + c,1 + c,��

0 −
ia

c*�c*
F�a + c*,− a + c*,1 + c*,�� F�a,− a,c,�� � . �14�

To have a unitary operation, it is necessary that Eq. �11� is
satisfied, i.e., the trion state gets only virtually excited. We
will refer to such pulses as “transitionless.” Mathematically,
this translates to a=1. We are also only interested in the form
of U after the passage of the pulse, when z=1. Then U be-
comes

U � 
1 0 0

0 1 − 1/c* 0

0 0 1 − 1/c
� � 
1 0 0

0 e−i 0

0 0 ei � . �15�

The truncated evolution operator, in the 2�2 spin space
is described by the unitary matrix

Uspin � �1 0

0 e−i� = e−i/2�ei/2 0

0 e−i/2� . �16�

A phase between the �z� and �z̄� states translates to a rotation
about the z axis by an angle . So, while for a true two-level
system the induced phase of a transitionless pulse is trivial
when all the population is initially in the �z� state, for the
three-level system it yields a nontrivial rotation about the z

axis. The expression for the angle of rotation may be simpli-
fied:

tan


2
=

sin 

1 + cos 
=

�

�
⇒  = 2 arctan

�

�
. �17�

VI. NUMERICAL SIMULATION AND EXPERIMENTAL
PROPOSAL

Equations �16� and �17� are our main theoretical results.
To check how well this theory works for actual three level
systems and with decoherence and unintended dynamics in-
cluded, we simulate the spin beats of an optical experiment
in the dots.

The optical experiments on quantum dots are usually per-
formed at 4 K, which is well above the spin Zeeman splitting
for GaAs.1,13 We are thus starting with a completely mixed
state of the qubit and initializing it with optical pumping.1

We propose to use an RZ pulse which will probabilistically
initialize the spin to −0.5 polarization, as in Ref. 3. A �+
polarized pulse creates a spin vector �SV� initially pointing
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along −z and precessing about the static B field. We see that
by setting �=� /2 and �=0 all the population of the �z� state
is transferred to the trion, which subsequently decays inco-
herently to the two lower states provided that the trion state
linewidth is small compared to the spin Zeeman splitting so
that spontaneously generated coherence �SGC�1,14 may be
ignored. In Sec. VII we will investigate the effect of SGC
along with the other deteriorating mechanisms. We also
stress that SGC has been taken into account in all our nu-
merical simulations.

Since the designed operation is a rotation about the z axis,
the SV should not be affected when the incident control
pulse finds it at a dip or peak, i.e., at �z̄� or �z�, respectively.
On the other hand, the most prominent effect should be when
the SV is pointing along the y direction, which is the case in
our simulations.

To experimentally achieve a transitionless pulse, the Rabi
frequency of the initializing pulse could be doubled or pref-
erably a separate pump-probe experiment with the control
pulse in place of the pump may be performed. The transi-
tionless pulse induces a large initial spike and then the spin
beats essentially vanish, as shown in Fig. 4. The physics is
simple: the transitionless pulse only virtually excites the
trion, ideally transferring no population, so that it may not be
used for initialization via optical pumping. Once the pulse
duration and Rabi frequency of the control pulse are fixed,
the detuning will be varied from �=0, which renders a 	
rotation, to �=� / tan�	 /8�, which yields a 	 /4 rotation.

In our simulations we have used two or three pulses: an
initializing pulse, a control pulse, and in the case of �	 a
second control pulse to recover the beats and prove unitarity.
Experimentally, a third �or fourth� pulse, the probe, will be
used to perform the measurement of the spin. The time re-

FIG. 4. �Color online� Differential transmission signal �DTS� of
transitionless pulse on mixed state. Virtually no beats are generated
when �=�. Here, �=0.4 meV and �=0.

FIG. 5. �Color online� Differential transmission signal �DTS�
representing rotation of the spin in a GaAs dot by 	 with a resonant
pulse of �=0.4 meV. The time where the control pulse is centered
is indicated by the arrow.

FIG. 6. �Color online� DTS representing rotation of the spin in a
InAs dot by 	. The pulse is resonant with �=0.8 meV. The arrow
indicates the incidence time of the control pulse.

FIG. 7. �Color online� Bloch sphere depiction of the spin gen-
eration and rotation of Fig. 5. Initially there is no SV, and its gen-
eration along the −z direction is shown. During the rotation the
population is moved outside the 2�2 spin subspace and the SV
shrinks �line inside the sphere, corresponding to the arrow of Fig.
5�. The 	 rotation about the z axis is implemented when the SV is
pointing along −y. Note that the Bloch sphere itself has been shrunk
to a radius of 0.5 for clearer depiction.
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solved probe signal is called the differential transmission sig-
nal �DTS� as it measures the difference between the probe
signal with the pump on and that with the pump off. When
both a co-circularly and cross-circularly polarized probe is
used and the difference is taken1 the quantity measured is
�zz−�TT−�z̄z̄+�TT. For a �+ polarized pump, as in our case,
and after the decay of the trion level ��TT=0� the quantity
measured is �zz−�z̄z̄, i.e., the z component of the SV. The
duration of the pulses is taken to be about 6 ps for GaAs,
close to those used in Ref. 1, which translates to about �
=0.4 meV. We take the spin Zeeman splitting to be 40 �eV,
which corresponds to a B field of about 6.5 T.1 For InAs
dots, we take �=0.8 meV and the spin Zeeman splitting to
be 0.1 meV, which corresponds to B�2.3 T.6 The trion de-
cay rate for GaAs is also taken from Ref. 1, equal to
0.01 meV. For InAs dots it is about 0.6 �eV.15 The spin
dephasing has been chosen conservatively equal to 0.5 �eV
for both kinds of dots.

For a 	 rotation of the spin, the degree of unitarity of the
operation is evident in the beat amplitude after the control
pulse, Figs. 5 and 6 for GaAs and InAs dots, respectively. In
Fig. 7 a Bloch vector illustration of the spin generation and 	
rotation �corresponding to Fig. 5� is shown. To demonstrate
the unitarity of the control pulse for a rotation angle other
than 	, a second control pulse is used to rotate the SV back
to the yz plane and thus recover the initial beat amplitude, as
shown in Fig. 8 for GaAs and in Fig. 9 for InAs. We note that
the beats are not recovered completely due to errors originat-
ing from the trion decay and the �small but finite� precession
of the spin during the operation. We will ignore spin dephas-
ing in the following discussion on fidelity.

The spin will be measured via a weak probe. Given that a
�+ polarized probe measures the z component of the SV, the
actual angle of rotation in the experiment will be given by

exp = arccos
A1

A0
, �18�

where A0 and A1 are the beat amplitudes before and after the
control pulse respectively, as in Ref. 16.

VII. FIDELITY

A. Initialization

The initialization process described above ideally yields a
50% fidelity. However, the mechanism that undermines the
fidelity of the initialization is SGC, as mentioned above.14

SGC is suppressed by making the spin Zeeman splitting
larger.1,14 Our numerical simulations show that the fidelity of
initialization is about 40% for GaAs, even for relatively large
Zeeman splittings. Since the initialization is far from perfect
anyway, we will not worry about SGC effects.

A more important issue is a possible uncertainty in the
Rabi frequency, stemming from limited knowledge of the
dipole matrix element between �z� and �t�. Deviation of the
Rabi frequency from � /2 will limit the generated polariza-
tion. In Sec. VIII we discuss how to maximize the polariza-
tion by use of adaptive feedback loops.

Finally, valence band mixing will affect the spin polariza-
tion by altering the selection rules. Again, by use of a feed-
back loop that scans through the polarization of the laser, a
true � configuration is reached. This, also discussed in Sec.
VIII, will also allow for correction due to valence band mix-
ing in the subsequent control of the spin.

FIG. 8. �Color online� Differential transmission signal �DTS�
representing spin rotation in a GaAs dot by 	 /2 with pulse of �
=0.4 meV and �=�. The pump is centered at 50 ps, when the beats
start and the central times of the control pulses are indicated by the
arrows.

FIG. 9. �Color online� DTS showing the rotation of the spin in a
InAs dot by 	 /2. The pulse parameters are �=�=0.8 meV. The
arrows indicate the incidence time of the two control pulses.

FIG. 10. �Color online� Fidelity of the operation as a function of
the pulse bandwidth for GaAs dots. Large bandwidth corresponds to
fast pulses, and therefore smaller time intervals of trion excitation.
Here the angle of rotation equals 	. The uncertainty in the laser
electric field is 15%.
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B. Rotation

The fidelity is given by16,17

F = ����Ũ†Uid����2, �19�

where � is the initial state, Ũ and Uid are the actual and ideal
operations, respectively, and the average is to be taken over
the relevant �in our case 2�2� Hilbert space. If we define

I = Ũ†Uid, �20�

then the fidelity becomes

F =
1

3�
i

�Iii�2 +
1

6�
i�j

�Iij�2. �21�

The purity of the operation is given by17

P = Tr��out
2 � =

1

3�
i

TrRii
2 +

1

6�
i�j

Tr�RiiRjj + RijRji� ,

�22�
where Rij= Ũ�ijŨ

†.
The fidelity of the operation deteriorates due to the fol-

lowing mechanisms: the decay of the trion state during the
optical pulse, the spin precession during the pulse action, and
the spin dephasing. The dominant mechanism is the former;

it is irreversible and will degrade the unitarity of the opera-
tion, with the effect being stronger for longer pulses and for
pulses closer to resonance. Obviously, the shorter the pulse
the higher the fidelity; however, there may be a lower bound
to how short a pulse can be, as there seems to be an upper
bound on pulse strength the system can accommodate. Fig-
ure 10 shows the fidelity as a function of the pulse band-
width. Smaller detunings correspond to larger rotation
angles, Eq. �17�, so that the fidelity is lower for large rotation
angles, and is close to perfect for small angles, as shown in
Figs. 11 and 12 for GaAs and InAs dots, respectively.

On the other hand, the precession of the spin vector dur-
ing the action of the control pulse is a reversible evolution,
and will not affect the purity of the operation. It will, how-
ever, cause a tilt to the axis of rotation, affecting the fidelity.
In principle, this can be taken into account by choosing this
alternate axis of rotation instead of insisting on rotations
about z. In our case, however, it does play a small role in the
loss of fidelity, more so for longer pulses.

As in the initialization case, uncertainty in the Rabi fre-
quency and valence band mixing will affect the fidelity of the
rotation. In the next section we discuss how to overcome
these effects by use of feedback loops. Once this process is
carried out for initialization, the appropriate pulses will au-
tomatically be known for the rotation.

FIG. 11. �Color online� Fidelity of the opera-
tion as a function of the angle of rotation for
GaAs dots. Large angles correspond to pulses
closer to resonance, yielding loss of fidelity due
to �real� trion excitation. Here the bandwidth has
been taken equal to 0.3 meV and the uncertainty
in the laser electric field is 15%.

FIG. 12. �Color online� Fidelity of the opera-
tion as a function of the angle of rotation for InAs
dots. Large angles correspond to pulses closer to
resonance, yielding loss of fidelity due to �real�
trion excitation. Here the bandwidth has been
taken equal to 0.8 meV. The uncertainty in the
laser electric field is 15%.
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VIII. OVERCOMING ERRORS WITH FEEDBACK LOOPS

A. Uncertainty in laser parameters

Experimentally, the Rabi frequency may not be exactly
known if the polarization matrix element between �z� and �T�
has not been measured; one way to find the optimal value of
the Rabi frequency is fixing the pulse duration and scanning
the intensity until the response �spin polarization� is maxi-
mized. Actually, even if the pulse duration is not precisely
known, we can devise a feedback loop which combined with
the analyticity of our solution will yield the maximum polar-
ization, i.e., will pick the pulse with �=� /2. By use of the
evolution operator of Eq. �14�, we can find the trion popula-
tion after the passage of the pulse. The truncated evolution
operator for time t→� and for resonant pulses takes the
form

��� = 0� � 
1 0

0 cos���

2
� � , �23�

where ��=2	
�

� is the pulse area. Action of � on a mixed
density matrix yields

� = 
1/2 0

0 1/2 cos2���

2
� � . �24�

The feedback loop we propose consists of the laser, which is
connected to a computer which also records the measure-
ments from each run, and a pulse shaper. The pulse band-
width is fixed but not precisely known. The initial value of
the Rabi frequency �laser power� is also unknown, call it �1.
After the trion decays, the signal is proportional to the spin
polarization. The maximum of the beats then is given by

P1 =
A

2
sin2��1

�
	� , �25�

where A is some unknown constant related to the measure-
ment process. The value P1 is recorded and in the next run
the Rabi frequency is doubled, �2=2�1. The next run will
thus yield

P2 =
A

2
sin2�2�1

�
	� . �26�

The ratio is

P1/P2 =

sin2��1

�
	�

sin2�2�1

�
	� ⇒�P2

P1
= cos��2	

2�
� ⇒ �2

=
�

2	
arccos�1

2
�P2

P1
� . �27�

Therefore, in the third run the Rabi frequency should be
chosen to be

�3 =
	�2

arccos�1

2
�P2

P1
� , �28�

which is the target value, � /2. This is the maximum SV that
can be generated at a single shot, shown in Fig. 13 �compare
to Figs. 14 and 15 for a stronger and weaker pulse, respec-
tively�. An advantage of this scheme is that knowledge of
neither the pulse duration nor the Rabi frequency are re-
quired. It is also an indirect way of determining the dipole
matrix element between �z� and �T�.

B. Finite valence band mixing

In the presence of valence band mixing, the Hilbert space
is no longer 3�3. We account here for mixing between the

� 3
2 � �� 3̄

2
�� and the � 1̄

2 � �� 1
2
�� trions. Since in all cases the elec-

trons are in the same orbital and in a spin singlet state, we
list only the hole states

FIG. 13. �Color online� Initialization using a sech pulse with
�=0.4 meV and �=� /2.

FIG. 14. �Color online� Initialization with a pulse with �
=0.4 meV and �=1.5 � /2.

FIG. 15. �Color online� Initialization with a pulse with �
=0.4 meV and �=0.5 � /2.
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�HH + � = −
1
�2

��X + iY�↑� , �29�

�LH − � =
1
�6

��X − iY�↑� +�2

3
�Z↓� , �30�

�LH + � = −
1
�6

��X + iY�↓� +�2

3
�Z↑� , �31�

�HH − � =
1
�2

��X − iY�↓� , �32�

where �X± iY� and �Z� are the l=1 spherical harmonics with
m= ±1 and m=0, respectively. The corresponding trion

states will be denoted by �H� �=�T�� , �L̄� , �L� , �H̄�.
When valence band mixing is included, the valence

Hamiltonian in the ��H� , �L̄� , �H� , �L�	 basis is

H = 


H v 0 0

v* 
L 0 0

0 0 
H v

0 0 v* 
L

� , �33�

where v is the coupling between heavy and light hole. The
dot potential has been assumed such that the mixing between

�H� ��H̄�� and �L� ��L̄�� is zero. To solve the eigenvalue equa-
tion, it helps to redefine the zero of energy by subtracting

̄ /2�


L+
H

2 ; then we get

H = 

− a v 0 0

v* a 0 0

0 0 − a v

0 0 v* a
� , �34�

where a=

L−
H

2 .
By diagonalizing within the blocks, the solution is given

by the following eigenvalues and eigenstates:

�± = ± �a2 + v2, �35�

C1,− = 

cos

�

2

− sin
�

2

0

0

� � �Hl̄� , �36�

C1,+ = 

sin

�

2

cos
�

2

0

0

� � �L̄h� , �37�

C2,− = 

0

0

cos
�

2

− sin
�

2

� � �Hl̄� , �38�

C2,+ = 

0

0

sin
�

2

cos
�

2

� � �L̄h� . �39�

The angle � is defined through

cos � =
a

�a2 + v2
, �40�

and v is taken to be real.
Restoring the zero of energy, we can write the Hamil-

tonian in the new basis ��Hl̄� , �L̄h� , �H̄l� , �Lh̄�	 as

H = 


̄

2
− � 0 0 0

0

̄

2
+ � 0 0

0 0

̄

2
− � 0

0 0 0

̄

2
+ �

� . �41�

If �+ light is used, propagating along z and centered at the
HH trions �with energy 
̄

2 −�� the trion states of higher en-
ergy can be ignored by frequency selectivity. In the presence
of the mixing we will have a 4�4 Hamiltonian instead of
the 3�3 from the previous sections, where mixing was ig-

nored. In the ��z� , �z̄� , �Hl̄� , �H̄l�	 basis, where state �Hl̄� ��H̄l��
represents a state with largest contribution from the �H� ��H̄��
the total Hamiltonian, including the dipole interaction, is

H4 = 

0 �B � cos

�

2
0

�B 0 0
1
�3

� sin
�

2

�* cos
�

2
0


̄

2
− � 0

0
1
�3

�* sin
�

2
0


̄

2
− �

� .

�42�

From Eq. �42� it is clear that when a �+2	 sech pulse is
used, there is actually some error in the rotation scheme of
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the previous sections, due to an incomplete Rabi cycle in-

volving the new state �Hl̄�, and also due to some population

transfer to the �H̄l� state. Although this is going to be a very
small effect �compared, for example, to the decay of the trion
state during the pulse action�, we can compensate for it by
changing the polarization of the applied field and recover a
3�3 � system, which will allow us to use our rotation
scheme, as proposed in Sec. V. To find the target polariza-
tion, we assume elliptical polarization

cxx̂ + icyŷ �43�

and require

�H̄l��cxx̂ + icyŷ��z̄� = 0. �44�

Solving Eq. �44� for the c’s along with the normalization
condition cx

2+cy
2=1, we find

cx
0 =

1
�2

cos
�

2
−

1
�6

sin
�

2

�cos2 �

2
+

1

3
sin2 �

2
�1/2 , �45�

cy
0 =

1
�2

cos
�

2
+

1
�6

sin
�

2

�cos2 �

2
+

1

3
sin2 �

2
�1/2 . �46�

Then a three-level system is recovered, consisting of the

states �z�, �z̄�, and �Hl̄�, and our rotation scheme may be
carried out.

To determine the desired polarization, knowledge of �,
and thus cx

0 ,cy
0, is not necessary. Instead, a feedback loop can

be devised, in the spirit of the one described in Sec. VIII A
The Hamiltonian for arbitrary elliptical laser polarization

cxx̂+ icyŷ is given by

H = 

0 �B �+ 0

�B 0 0 �−

�+
* 0


̄

2
− � 0

0 �−
* 0


̄

2
− �

� , �47�

where

�+ = − �
�cx + cy�

�2
cos

�

2
− �

�cx − cy�
�6

sin
�

2
, �48�

�− = �
�cx − cy�

�2
cos

�

2
+ �

�cx + cy�
�6

sin
�

2
. �49�

Initially the density matrix is taken to be in a spin ensemble
�=diag�1/2 ,1 /2 ,0 ,0�. After the pulse we have

�=diag� 1
2 cos2 �+

2 , 1
2 cos2 �−

2 , 1
2 sin2 �+

2 , 1
2 sin2 �−

2
�, where �±

=
2	�±

� . The signal then, ignoring SGC, will be

P =
A

2
�cos2 �+

2
− cos2 �−

2
� =

A

4
�cos �+ − cos �−�

= −
A

2
sin

�+ + �−

2
sin

�+ − �−

2
.

Inserting the expressions for the angles �±, we get

P =
A

2
sin�2	�

�
cy� 1

�6
n

�

2
−

1
�2

cos
�

2��
� sin�2	�

�
cx� 1

�6
sin

�

2
+

1
�2

cos
�

2��
�

A

2
sin��1	c�sin��2	�1 − c2� . �50�

The feedback loop is designed as follows: First, we pick c
=cx=1/�5 and the signal is

P1 =
A

2
sin��1	

�5
�sin�2�2	

�5
� . �51�

For the second run, we choose c→2c we get

P2

P1
=

cos��1	/�5�
cos��2	/�5�

, �52�

which after some algebra becomes

P2

P1
=

cos��1	/�5�

cos��1	

2�5
+�2	2�2

5�2 −
3�1

2	2

20
� , �53�

where

�1 =
2�

�
� 1

�6
sin

�

2
+

1
�2

cos
�

2 � . �54�

Equations �53� and �54� can be solved numerically and thus
determine �, from which the target polarization will be
found from Eqs. �45� and �46�, so that in the third run the
ideal polarization will have been reached.

For small angle �, i.e., small mixing, the small-angle ap-
proximation may be employed to obtain an analytical solu-
tion for the polarization of the third run in terms of the sig-
nals from the first two runs. In this limit, we have for �1

�1 �
2�

�
� �

2�6
+

1
�2

� , �55�

and � is then

� =
�30�

	�
cot� 2	�

�10�
�P1 − P2

P1 + P2
. �56�
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IX. ERRORS DUE TO INCOMPLETE RABI FLOP OF
EXCITONS

A crucial feature in our scheme is the complete Rabi flop
of the trion with a 2	 pulse. Rabi oscillations for excitons in
quantum dots have been demonstrated experimentally,18 but
they do exhibit distinct features compared to atoms. In Ref.
19 exciton population was measured as a function of the
pulse area. For areas larger than 	, the Rabi oscillations were
shown to degrade considerably and the exciton was not
flopped all the way back to the vacuum by a 2	 pulse. This
effect was seen by several groups,19,20 and it was attributed
to itinerant excitons, phonons, and coupling to wetting layer
states.21 Rabi oscillations between spins and trion states were
demonstrated recently in ensemble experiments to have the
same feature.3 We note that for for practical use of our
scheme this issue certainly has to be addressed, but for ex-
perimental demonstration the rotation should be evident
�with a fidelity loss� even in the presence of the damped Rabi
flop. In a future work, we will take into account the deterio-
rating mechanism and try to correct for it via pulse shaping
and feedback loops.

X. ROTATIONS ABOUT OTHER AXES

A full set of rotations about one more axis would allow
for an arbitrary rotation when combined with the rotations
about z. Using the heavy-hole trion state, we can obtain ro-
tations about x using again RZ pulses, albeit a lot slower
ones, by frequency selectivity. If, e.g., a pulse is slow enough
to excite only one of the two spin states along x, then a 2	
RZ pulse, otherwise exactly the same as above, will cause a
rotation about x. Clearly, we would have to pay the price of
slow pulses, which is exactly what we set off to avoid. Pos-
sibly use of higher trion states �e.g., light hole trions� and/or
tilting the optical axis away from z may allow for more ef-
ficient rotations about axes other than z.

XI. ENSEMBLE STUDY

The experiment may also be performed in an ensemble of
dots. Both pump and probe pulses should be modulated at

different frequencies,22 whereas the control is left unmodu-
lated, so that only the SV initialized by the pump is mea-
sured, and the control is measured to all orders in the control
field.

In our simulations, we take into account the inhomogene-
ity of the g factors by an ensemble average over the Gaussian
distribution with a full width at half maximum �FWHM� of
�g=0.08g0,

1 and the inhomogeneity of the trion energies by
a Gaussian, with a FWHM of about 3 meV.23 The central
spin Zeeman splitting is 50 �eV, so that it may represent
GaAs dots in a high magnetic field. The pulse bandwidth is
again chosen to be 0.3 meV. We have simulated the en-
semble response for two different rotation angles, =	,
shown in Fig. 16 and =	 /2, shown in Fig. 17, cf to Figs. 5
and 8, respectively.

The first prominent feature of the plots is that the gener-
ated polarization drops by almost an order of magnitude
compared to the single spin case. This is due to the contri-
bution of the nonresonant dots to the beat signal. It also
exhibits a spike, even for �=� /2. Moreover, the operation
itself deteriorates significantly compared to the single dot, cf.
Figs. 16 and 6 for example. However, the beat amplitude is
found to be somewhat recovered by the second rotation in
the =	 /2 case, and in the =	 case, although the opera-
tion is far from unitary, the phase changes according to the
theory. We therefore conclude that for demonstration pur-
poses the ensemble should also work.

XII. CONCLUSIONS

We have shown how the analytically solvable sech pulses
for a two-level system �Rosen-Zener pulses� may be used in
a � type system when the two transitions share a common
polarization and are close in frequency. The analyticity of the
RZ pulses enables us to derive an analytical expression for
the angle of rotation. Use of short pulses improves the fidel-
ity of our scheme. Numerical simulation shows a fidelity of
at least 96% for a realistic choice of parameters. Our scheme
can be used to rotate about the growth direction the spin of
electrons trapped in quantum dots via Raman transitions

FIG. 16. DTS representing ensemble spin rotation by 	 using a
resonant pulse with �=0.4 meV. The fidelity of the rotation is a lot
lower than the single-qubit case. The arrow indicates the time of
incidence of the control pulse.

FIG. 17. DTS representing ensemble spin rotation by 	 /2. To
demonstrate that the operation is a rotation, a second pulse is used
to restore the beats. The two arrows indicate the incidence times of
the two control pulses.
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involving the heavy hole trion. Thus, it does not supplant the
full rotations in Ref. 8. However, it suggests the possibility
for an experimental demonstration without need of address-
ing a single dot.
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We demonstrate single qubit density matrix tomography in a single semiconductor quantum dot system
through consecutive phase sensitive rotations of the qubit via ultrafast coherent optical excitations. The
result is important for quantifying gate operations in quantum information processing in the quantum dot
systems as well as demonstrating consecutive arbitrary qubit rotations.
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Many critical milestones toward practical quantum com-
putation have now been achieved in exciton based qubit
systems including single qubit rotation [1], a two-qubit
controlled-NOT gate [2], and a two-qubit population swap
[3]. The demonstration of density matrix tomography of
the exciton based qubit is another critical step enabling
valuable quantification on the performance (fidelity) of the
operations mentioned above [4]. In addition, achieving
multiple consecutive rotations of a qubit within its coher-
ence lifetime is required in quantum computation pro-
cesses. Maintaining the relative phase information
between consecutive operations on the qubit is essential
for the accuracy of the end results. For example, logic
operations in error correction codes [4] and in the
Deutsch-Josa (DJ) problem [5] require a pair of phase-
locked Hadamard gates to prepare and collapse the qubit in
order to achieve correct outputs.

In this Letter, we combine techniques of signal calibra-
tion and optical phase control on an exciton based qubit in
a single quantum dot (QD) to demonstrate rotation of the
measurement basis of the qubit as done in nuclear magnetic
resonance (NMR) [6] and atomic [7] systems. This enables
us to realize the first tomographic reconstruction of the
density matrix of a qubit in a single QD, laying the ground
work for measuring the fidelity of quantum operations in a
QD system. Furthermore, it shows the suppression of
scattering effects characteristic of higher dimensional
semiconductor systems, validating the atomic approxima-
tion of the exciton states in QDs.

The sample under investigation consists of interface
fluctuation GaAs=Al0:3Ga0:7As QDs [8–10]. Single dots
are detected through submicron apertures on a thin alumi-
num mask deposited on the sample [9]. The excitons in
each single dot have an average lifetime of 60 ps with
negligible pure dephasing effects inferred from nonlinear
spectroscopy studies [11,12].

To achieve multiple operations within the apparent co-
herence time of the exciton (� 100 ps), picosecond laser
pulses are used for the ultrafast control of the qubit. A 3 ps
pulse is chosen as a compromise between operational
speed and spectral selectivity. A modulated time domain

pump-probe technique is used to obtain and process the
homodyne-detected nonlinear optical signals from differ-
ential transmission (DT).

The physical structure of the interface fluctuation dots
allows for the confinement of two linear orthogonally
polarized excitons inside a single dot [8]. For the experi-
ments described in this Letter, we approximate the elec-
tronic structure of the two Coulomb coupled excitons by a
four-level system as shown in Figs. 1(a) and 1(b) [2]. The
lower state is the crystal ground state, the intermediate
states are two nearly degenerate linear orthogonally polar-
ized excitons, and the upper state is the biexciton. Since the
laser bandwidth (�0:4 meV) is much smaller than the
binding energy of the biexciton (�3:5 meV) [2], we can
safely neglect transitions to the biexciton and concentrate
on the reduced three level V system in the dashed boxes
illustrated in Figs. 1(a) and 1(b).

In Ref. [2], both exciton transitions constitute qubits.
Here, we define one polarized transition of the exciton (�x,
horizontal) as the qubit and the orthogonally polarized
transition (�y, vertical) as the readout for the purpose of
this measurement. The qubit states are j0i and j1i and the
state jRi is the readout exciton as labeled in Figs. 1(a) and
1(b).

Single qubit rotations for logic operations can be
achieved through coherent excitation. The optical pulse
area, �, is defined by ��t� �

R
t
�1 dt�eg �E�t�=@, where

�eg is the optical dipole moment of the ground to exciton
state transition and E�t� is the electric field amplitude of
the laser pulse. We can apply pulses with corresponding
pulse areas from 0 to � to create an arbitrary superposition
state of j0i and j1i from the state j0i, as demonstrated in the
optically driven single exciton Rabi oscillations [1,13–15].

To derive a direct correspondence between the popula-
tions of the qubit states, j0i and j1i, and the measured DT
signal, a calibration scheme is implemented with the read-
out state jRi. The QD system under no optical excitation is
initialized in the j0i state (�00 � 1, �11 � �RR � 0 where
� is the density matrix). For calibration, we can resonantly
excite transitions between the qubit states with a pump
pulse of known pulse area. The weak probe then measures
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the population of the j0i state. The DT signal, which is the
signal with the pump off minus the signal with the pump
on, is proportional to 1� �00. Since the two-level qubit
system in a single dot is shown to be a closed system
(�11 � �00 � 1) [12], �11 is linearly proportional to the
signal. Without decay, this is sufficient to completely
calibrate the DT signal. However, in a physical system,
due to the finite pulse width of 3 ps and the short relaxation
time of the exciton at 65 ps, a � pulse does not invoke a
complete population inversion from state j0i to j1i. Hence,
we must take decay into consideration.

A pair of experiments is conducted to measure the
amount of population transferred to state j1i for a � pulse.
First, a two-beam setup is used to drive transitions between
states j0i and jRi [thin blue solid and dashed arrows in
Fig. 1(a)], where the solid (dashed) arrow represents the
pump (probe). The pump and probe with the same optical
frequency are scanned in frequency, where the pump is set
at a pulse area of � and the probe is kept weak below a
pulse area of �=2. The pump and probe are temporally
separated by 10 ps to avoid any contribution from coherent
artifacts. The DT signal is recorded as the blue open circle

plot in Fig. 1(c), where the exciton transition of interest is
highlighted in green. We denote the signal strength of this
measurement as A. High spectral resolution spectroscopies
using continuous wave lasers [12] are also made on the
state to ensure single exciton excitation (data not shown).
Next, a three-beam setup measures the population remain-
ing in the j0i state after a � pulse excitation. A prepump
with pulse area � is fixed in frequency at the j0i to j1i
transition [thick green solid arrow in Fig. 1(b)], and trans-
fers the maximum population to state j1i. A pump and
probe pair similar to the two-beam experiment [thin red
solid and dashed arrows in Fig. 1(b)], is delayed 10 ps from
the prepump and scanned in frequency to read the popula-
tion in state j0i by driving transitions to state jRi. The
result is recorded as the red solid circle plot in Fig. 1(c).
The signal strength of the highlighted state in this experi-
ment is denoted as B. From the values of A and B and the
linear correspondence between population difference and
DT signal, we conclude that the maximum population
transferred by a 3 ps wide � pulse is 1� B=A � 88�
1%. A simulation using the experimental parameters gives
the result of a 85% population transfer, which is in excel-
lent agreement with the data.

The ability of the quantum system to sustain and propa-
gate information in time is enabled by the optical phase-
locking capability of the experimental setup. A Michelson
interferometer is inserted in the path of the pump beam to
create two pump pulses with tunable temporal delay (� on
scale of ps) and an actively stabilized phase delay (� on
scale of fs) via a translation stage and a piezoelectric
mount, respectively, as shown in Fig. 2. We fixed two
pump pulses each with a pulse area of � � �=2. The
pump pulses are separated by � � 10 ps to ensure that
the final qubit state is due to two distinct optical operations,
and not the product of optical interference. By varying �,
we are changing the effective pulse area of the pulse
sequence. The changes in � are reflected in the sinusoidal
oscillations of the j1i state population as illustrated by the
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FIG. 2 (color online). Phase dependent rotations of a qubit in
the exciton system. The red (blue) plot corresponds to a relative
phase of � � ��2�� between the two pump pulses, as indicated
by the red (blue) arrow in the inset. The open circle plot is a
single �=2 decay, which serves as a comparison. The inset is an
interferogram. Here � � 10 ps and ! is the laser frequency.
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FIG. 1 (color online). (a) and (b) Four-level representation.
(a) Two-beam setup. (b) Three-beam setup. j0i and j1i are the
crystal ground state and the qubit exciton, respectively, while jRi
is the readout exciton. The arrows in (a) and (b) denote the laser
pulses, where the dashed lines are the probes, the normal solid
lines are the pumps and the thick solid line is the prepump.
(c) DT signal obtained by using the two-beam (blue, open circle)
and three-beam (red, solid circle) setups. The state where the
prepump is fixed is highlighted in green (gray). We indicate that
a � pulse inverts 88% of the population to state j1i, leaving 12%
in state j0i.
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quantum interferograms in the insets of Fig. 2. The maxima
of the interferogram correspond to constructive interfer-
ence (� � 2�, effective � � �) while the minima corre-
spond to destructive interference (� � �, effective
� � 0).

To understand the physical pictures behind the time
evolutions of consecutive optical operations, we examine
the dynamics of motion in the Bloch sphere representation.
The optical Bloch vector, U with elements fu; v;wg �
f2 Re	�01
;�2 Im	�01
; �11 � �00g, precesses around the
field vector R � fRe	E�t�
;�Im	E�t�
; �g, where � is the
laser detuning for the two-level system (� � 0 for this
work, and R lies in the u-v plane). The equation of motion
is thus given by _U � R� U. The component of the Bloch
vector projected onto the u-v plane represents the coher-
ence, and the projection onto the w axis represents the
population difference of the quantum system. The j0i
(j1i) state is represented by the Bloch vector pointing
down (up).

Ideally, for two pump pulses each at � � �=2, the qubit
state is initially driven from the j0i state to the �j0i �
j1i�=

���
2
p

state described by the Bloch vector rotating around
the field vector from a down position to the u-v plane. By
setting � � �, the out-of-phase second pulse drives the
quantum state back down to j0i. In contrast, for � � 2�,
the now in-phase second pulse drives the quantum state up
to j1i. Hence, phase control between consecutive quantum
operations is critical since two consecutive rotations with
the same magnitudes but different phases can lead to
profoundly different outcomes, a result well known in
atomic type systems. The ability to control this phase
then ensures control for consecutive and arbitrary qubit
rotations as well as accuracy of the operation output, all of
which are necessary for practical quantum information
processing.

Because of decays, the experimental results deviate from
the ideal, as shown in Fig. 2. These data are taken by fixing
the pumps and scanning the probe delay to observe the
decay dynamics of the system. Clearly, in Fig. 2, the red
plot shows that the population is not completely driven
back down to state j0i following the second pump pulse
due to the short lifetime of the exciton. The fast population
decay leads to the loss of coherence between the two-qubit
states and limits the accuracy of coherent control by laser
pulses.

The phase locking of an optical pulse to the coherence of
a quantum system now enables us to perform quantum
tomography of the density matrix for a single qubit. We
demonstrate the ability to measure the off-diagonal matrix
elements (�01; �10) as well as the diagonal density matrix
elements (�00; �11) of a closed two-level system, which
leads to a complete mapping of the density matrix of a
qubit in a single QD. To obtain the coherence terms, we
rotate the component in the u-v plane onto the measure-
ment axis w through an optical excitation of � � �=2. By

choosing the right phase of this optical rotation field, we
can easily extract both the real and imaginary parts of the
coherence terms.

From the equation of motion, the time evolution of the
Bloch vector U is a precession around the field vector R by
an angle of the pulse area of the field. We utilize this
precession in a controlled manner to extract the real and
imaginary parts of the coherence terms. Since the real
(imaginary) components of the field and coherence lie on
the u (v) axis, a purely real field (� � 0) at � � �=2
rotates only the imaginary part of the coherence to the w
axis for measurement. Similarly, a purely imaginary field
(� � �=2) only measures the real part of the coherence.

Mathematically, we can see the relation between � and
the components of the coherence being measured in the
new population term �rot

11 , after the �=2 rotation,

�rot
11 �

1

2
	1� i�e�i��01 � e

i��10�
; (1)

where �rot
11 � 1=2� Im	�01
 for � � 0 and �rot

11 � 1=2�
Re	�01
 for � � �=2 for a closed system.

We demonstrate the application of single qubit density
matrix tomography on the maximum coherent state of a
two-level system created by a �=2 pulse. The population
terms, �00 and �11, are measured through a two-beam
experiment where the creation pulse of �=2 prepares the
state and the probe directly reads the value of �11 � 0:36
through the calibrated DT signal as shown in Fig. 3. To
measure the coherence terms (�01 and �10), a �=2 rotation
pulse is inserted after the creation pulse to rotate the
coherence components to the measurement axis w. The
values of �rot

11 � 0:73 at � � 0 and �rot
11 � 0:42 at � �

�=2 can be obtained through the calibrated interferogram
shown in Fig. 3. In both cases, the creation pulse is tem-
porally separated from the other pulses by 10 ps to avoid
interfering with the preparation of the original state.

Using Eq. (1) and values from Fig. 3, we obtain the
measured density matrix as seen in Fig. 4(d). The values
are notably different from the ideal matrix in Fig. 4(a) and
also the expected values of the matrix given the decay
parameters of the sample shown in Fig. 4(b).
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The large discrepancies between the coherence (off-
diagonal) terms in these density matrices can be attributed
to the measurement process represented by the rotation
pulse. In numerical simulations including the measurement
process [Fig. 4(c)], the density matrix elements are com-
parable to the measured values. The excellent agreement
between Figs. 4(c) and 4(d) signifies that we have a com-
plete knowledge of the quantum system used and that its
behavior under excitation is completely theoretically
predictable.

We note that the population terms of all three nonideal
density matrices are essentially the same. However, the
coherence terms of the density matrices with the inclusion
of the rotation pulse stray from their ideal values.
Specifically, in the presence of the rotation pulse, the
coherence terms have nonzero real components, while in
the absence of a rotation pulse, they are purely imaginary
regardless of the qubit lifetime. This apparent discrepancy
arises from the short decoherence of the system and the
temporal overlap of the first and the second pump pulses.
Although the two 3 ps wide pump pulses are separated by
10 ps, the pulse tail of the first pulse and the pulse front of
the second pulse overlap. The amount of overlap, though
small, can still affect the accuracy of the measurement of
the coherence terms.

In the Bloch sphere representation, we can attribute the
error to population decay and the simultaneous rotation of
the Bloch vector by the creation and rotation pulses, both
of which lead to a nonzero real component in the measured
coherence terms. We can avoid simultaneous rotation of

the Bloch vector by separating the two pulses further to
eliminate overlaps, but the short decoherence between the
qubit states j0i and j1i will begin to introduce greater error
as the measurement is made at a larger delay. It may be that
the discrepancies can be minimized by using a combina-
tion of pulse-shaping techniques on shorter pulses to avoid
exciting nearby states [16–18]. Quantum systems with
longer decay times, such as the spin qubit system in
charged QDs, would also minimize this error.

In summary, we have demonstrated the tomographic
reconstruction of the density matrix of a single qubit as
well as consecutive arbitrary qubit rotations. These mea-
surements can be easily extended to map the complete
physical density matrix of multiqubit systems as in
Ref. [2]. Even though the measurement accuracy is limited
by the intrinsic decay parameters of the quantum system,
the technique itself is proven to be suitable and practical
for the purpose of density matrix tomography. Improved
performance in optically driven spin based systems [19] is
anticipated because spin lifetimes are expected to be 4 or-
ders of magnitude longer than the exciton system [20–23].

This work was supported in part by NSF, FOCUS,
DARPA, ARDA/NSA/ARO, and ONR.

*Present address: JILA, University of Colorado, Boulder,
CO 80309, USA.

†Electronic address: dst@umich.edu
[1] T. H. Stievater et al., Phys. Rev. Lett. 87, 133603 (2001).
[2] X. Li et al., Science 301, 809 (2003).
[3] Q. Q. Wang et al., Phys. Rev. Lett. 95, 187404 (2005).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, United Kingdom, 2000), 1st ed., p. 425.

[5] D. Deutsch and R. Jozsa, Proc. R. Soc. A 439, 553 (1992).
[6] A. M. Childs, I. L. Chuang, and D. W. Leung, Phys. Rev. A

64, 012314 (2001).
[7] P. C. Haljan et al., Phys. Rev. A 72, 062316 (2005).
[8] D. Gammon et al., Phys. Rev. Lett. 76, 3005 (1996).
[9] D. Gammon et al., Science 273, 87 (1996).

[10] J. G. Tischler et al., Phys. Rev. B 66, 081310(R) (2002).
[11] N. H. Bonadeo et al., Science 282, 1473 (1998).
[12] N. H. Bonadeo et al., Phys. Rev. Lett. 81, 2759 (1998).
[13] H. Kamada et al., Phys. Rev. Lett. 87, 246401 (2001).
[14] H. Htoon et al., Phys. Rev. Lett. 88, 087401 (2002).
[15] A. Zrenner et al., Nature (London) 418, 612 (2002).
[16] P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett.

87, 067401 (2001).
[17] T. Calarco et al., Phys. Rev. A 68, 012310 (2003).
[18] C. Piermarocchi et al., Phys. Rev. B 65, 075307 (2002).
[19] C. Piermarocchi et al., Phys. Rev. Lett. 89, 167402 (2002).
[20] M. Kroutvar et al., Nature (London) 432, 81 (2004).
[21] J. M. Elzerman et al., Nature (London) 430, 431 (2004).
[22] R. Hanson et al., Phys. Rev. Lett. 94, 196802 (2005).
[23] J. R. Petta et al., Science 309, 2180 (2005).

0
1

1

0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.50

0.50

i0.50

-i0.50

0
1

1

0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.08-i0.23

0.08+i0.23

0.36

0.64

0
1

1

0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.08-i0.21

0.08+i0.21

0.40

0.60

0
1

1

0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.59

0.41

-i0.47

i0.47

a)  Ideal b)  Calculated with Decays

c)  Calculated with Decays d)  Experiment

In
cl

ud
e 

M
ea

su
re

m
en

t
E

xc
lu

de
 M

ea
su

re
m

en
t

(+0.05)-

(+0.05)-

(+0.03)-

(+0.03)-

FIG. 4 (color online). Density matrices of a single qubit cre-
ated by a �=2 pulse. (a) Ideal matrix. (b)[(c)] Calculated density
matrices with decays excluding (including) rotation and probe
pulses. (d) Measured density matrix from experiment.

PRL 96, 087402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

087402-4


